Concept explainers
To explain: The possibility for the existence of antiatoms in some part of the universe, their detection, and the problems might arise if we actually did go there.
Answer to Problem 44.1DQ
There is possibility for the existence of antiatoms in the universe and their detection is not possible since their spectra will be the same as that of corresponding matter and the matter antimatter annihilation will result the destruction of our body if we actually go to a region of antimatter.
Explanation of Solution
The antiparticles bind with one another to form antimatter as exactly same as the ordinary particle bind to form the matter. If a positron and an antiproton bind together, the result will be an antihydrogen which can be considered the smallest antiatom. The physical principles indicate that in the universe, complex antimatter atomic nuclei composed of antiprotons and antineutrons are possible, as well as when they surrounded by positrons, the existence of antiatoms corresponding to the known chemical elements is also possible.
A specific method for the detection of the antimatter is not known since, if the neutral antiatoms do exist, their behavior will be exactly same as the normal atoms. So any spectra of an atom that given by the light that emit which composed of photons will be the same as the spectra that given by the antiatom, which composed of antiphotons. This is only because photon is its own antiparticle. So we cannot detect the antiatoms by identifying the light they emit as composed of antiphotons. The only way to identify the presence of antimatter is through their annihilation with matter. If we actually did go to the antimatter region the problem that might occur is that the annihilation of matter in our body with the antimatter in that region and thereby the complete destruction of our body.
Conclusion:
Thus, there is possibility for the existence of antiatoms in the universe and their detection is not possible since their spectra will be the same as that of corresponding matter and the matter antimatter annihilation will result the destruction of our body if we actually go to a region of antimatter.
Want to see more full solutions like this?
Chapter 44 Solutions
University Physics with Modern Physics (14th Edition)
- (a) Estimate the mass of the luminous matter in the known universe, given there are 1011 galaxies, each containing 1011 stars of average mass 1.5 times that of our Sun. (b) How many protons (the most abundant nuclide) are there in this mates? (c) Estimate the total number of particles in the observable universe by multiplying the answer to (b) by two, since there is an electron for each proton, and then by 109, since there are far more particles (such as photons and neutrinos) in space than in luminous matter.arrow_forwardMore than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an antineutrino — the antimatter answer to the nearly massless neutrino — collided with an electron, it could produce a cascade of other particles. The Glashow resonance phenomenon is hard to detect, in large part because the antineutrino needs about 1,000 times more energy than what's produced in the most powerful colliders on Earth. 1. What is the threshold antineutrino energy for the Glashow resonance in peta electronvolts (PeV)? 2. What is this threshold energy in units of joules? 3.Now consider a baseball with the same kinetic energy as that of the Glashow resonance. What speed in m/s would correspond to this energy? 4.What is this rate in units of inches/second?arrow_forwardAccording to the article Alien Antimatter Crashes into Earth e: More than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an antineutrino – the antimatter answer to the nearly massless neutrino – collided with electron, it could produce a cascade of other particles. The "Glashow resonance phenomenon is hard to detect, in large part because the antineutrino needs about 1,0 %3D times more energy than what's produced in the most powerful colliders on Earth. Let's compare this event to an ordinary baseball with a mass of 146 g. Please use three significant figures in your calculations.arrow_forward
- How can quarks, which are fermions, combine to form bosons? Why must an even number combine to form a boson? Give one example by stating the quark substructure of a boson.arrow_forwardIn the theory of quantum chromodynamics, quarks come in three colors. How would you justify the statement, “All baryons and mesons are colorless”?arrow_forwardMore than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an antineutrino — the antimatter answer to the nearly massless neutrino — collided with an electron, it could produce a cascade of other particles. The "Glashow resonanceLinks to an external site." phenomenon is hard to detect, in large part because the antineutrino needs about 1,000 times more energy than what's produced in the most powerful colliders on Earth. What is the threshold antineutrino energy for the Glashow resonance in peta electronvolts (PeV)?arrow_forward
- More than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an antineutrino — the antimatter answer to the nearly massless neutrino — collided with an electron, it could produce a cascade of other particles. The "Glashow resonance (Links to an external site.)" phenomenon is hard to detect, in large part because the antineutrino needs about 1,000 times more energy than what's produced in the most powerful colliders on Earth. Let's compare this event to an ordinary baseball with a mass of 146 g. Please use three significant figures in your calculations. 1. Now consider a baseball with the same kinetic energy as that of the Glashow resonance. What speed in m/s would correspond to this energy? 2.arrow_forwardAccording to the article Alien Antimatter Crashes into Earth : More than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an collided with an antineutrino the antimatter answer to the nearly massless neutrino | electron, it could produce a cascade of other particles. The "Glashow resonance - phenomenon is hard to detect, in large part because the antineutrino needs about 1,000 times more energy than what's produced in the most powerful colliders on Earth. Let's compare this event to an ordinary baseball with a mass of 146 g. Please use three significant figures in your calculations.arrow_forwardEdwin Hubble observed that the light from very distant galaxies was redshifted and that the farther away a galaxy was, the greater its redshift. What does this say about very distant galaxies? When Hubble first estimated the Hubble constant, galaxy distances were still very uncertain, and he got a value for H of about 600 km/s per Mpc. What would this have implied about the age of the universe? What problems would this have presented for cosmologists?arrow_forward
- 1. Given questions about reviewing the quark model a. With six different quark flavors, how many different meson pairings are possible? Let's say they come in the flavors u, d, c, s, t, and d. Please explain these combination ! b. With six different quark flavors, how many different Baryon pairings are possible? Let's say they come in the flavors u, d, c, s, t, and d. Please explain these combination !arrow_forwardchoose the answer from the drop downarrow_forwardWhat do the quark compositions and other quantum numbers imply about the relationships between the ∆+ and the proton? The ∆0 and the neutron?arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning