University Physics with Modern Physics (14th Edition)
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 44.1DQ
To determine

To explain: The possibility for the existence of antiatoms in some part of the universe, their detection, and the problems might arise if we actually did go there.

Expert Solution & Answer
Check Mark

Answer to Problem 44.1DQ

There is possibility for the existence of antiatoms in the universe and their detection is not possible since their spectra will be the same as that of corresponding matter and the matter antimatter annihilation will result the destruction of our body if we actually go to a region of antimatter.

Explanation of Solution

The antiparticles bind with one another to form antimatter as exactly same as the ordinary particle bind to form the matter. If a positron and an antiproton bind together, the result will be an antihydrogen which can be considered the smallest antiatom. The physical principles indicate that in the universe, complex antimatter atomic nuclei composed of antiprotons and antineutrons are possible, as well as when they surrounded by positrons, the existence of antiatoms corresponding to the known chemical elements is also possible.

A specific method for the detection of the antimatter is not known since, if the neutral antiatoms do exist, their behavior will be exactly same as the normal atoms. So any spectra of an atom that given by the light that emit which composed of photons will be the same as the spectra that given by the antiatom, which composed of antiphotons. This is only because photon is its own antiparticle. So we cannot detect the antiatoms by identifying the light they emit as composed of antiphotons. The only way to identify the presence of antimatter is through their annihilation with matter. If we actually did go to the antimatter region the problem that might occur is that the annihilation of matter in our body with the antimatter in that region and thereby the complete destruction of our body.

Conclusion:

Thus, there is possibility for the existence of antiatoms in the universe and their detection is not possible since their spectra will be the same as that of corresponding matter and the matter antimatter annihilation will result the destruction of our body if we actually go to a region of antimatter.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
01:50
Students have asked these similar questions
What two major limitations prevent us from building high-energy accelerators that are physically small?
More than 60 years ago, future Nobel laureate Sheldon Glashow predicted that if an antineutrino — the antimatter answer to the nearly massless neutrino — collided with an electron, it could produce a cascade of other particles. The Glashow resonance  phenomenon is hard to detect, in large part because the antineutrino needs about 1,000 times more energy than what's produced in the most powerful colliders on Earth. Let's compare this event to an ordinary baseball with a mass of 146 g. Please use three significant figures in your calculations.   1.What is the threshold antineutrino energy for the Glashow resonance in peta electronvolts (PeV)?   2.What is this threshold energy in units of joules?   3.Now consider a baseball with the same kinetic energy as that of the Glashow resonance. What speed in m/s would correspond to this energy?   4.What is this rate in units of inches/second?   please help!!
Consider the neutrino whose symbol is . (a) Is it a quark, a lepton, a meson, or a baryon? (b) Is it a particle or an antiparticle? (c) Is it a boson or a fermion? (d) Is it stable against spontaneous decay?

Chapter 44 Solutions

University Physics with Modern Physics (14th Edition)

Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning