BuyFindarrow_forward

Intermediate Algebra

10th Edition
Jerome E. Kaufmann + 1 other
ISBN: 9781285195728

Solutions

Chapter
Section
BuyFindarrow_forward

Intermediate Algebra

10th Edition
Jerome E. Kaufmann + 1 other
ISBN: 9781285195728
Textbook Problem

For Problems 11-52, perform the indicated divisions. (Objective 1)

( 2 x 3 + 9 x 2 17 x + 6 ) ÷ ( 2 x 1 )

To determine

To Find:

The value of the polynomials by performing the indicated division by binomials.

Explanation

Division of a polynomial by binomial is done by long-division method.

In this method to find the first quotient term, divide the first dividend term by the first divisor term.

Multiply the divisor with the term obtained by dividing the first dividend term with the first quotient term.

The product obtained is subtracted from the dividend.

Repeat the same process to divide the other terms of the dividend.

Calculation:

Consider the expression (2x3+9x217x+6)÷(2x1).

The following steps are used to solve the problem.

First multiply the divisor by x2 and write the product 2x3x2 under the dividend and subtract.

The value obtained is equals to 10x2.

Now multiply the divisor by 5x and write the product 10x25x under the dividend subtract.

The value obtained is equals to 12x.

Now multiply the divisor by 6 and write the product 12x+6  under the dividend and simplify.

By using the long division it is written as follows,

2x1x2+5x62x3+9x217x+6           2x3x2           _                  10x217x                        10x25x          _                            12x+6                             12x+6           <

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-4.1 P-1PSSect-4.1 P-2PSSect-4.1 P-3PSSect-4.1 P-4PSSect-4.1 P-5PSSect-4.1 P-6PSSect-4.1 P-7PSSect-4.1 P-8PSSect-4.1 P-9PSSect-4.1 P-10PSSect-4.1 P-11PSSect-4.1 P-12PSSect-4.1 P-13PSSect-4.1 P-14PSSect-4.1 P-15PSSect-4.1 P-16PSSect-4.1 P-17PSSect-4.1 P-18PSSect-4.1 P-19PSSect-4.1 P-20PSSect-4.1 P-21PSSect-4.1 P-22PSSect-4.1 P-23PSSect-4.1 P-24PSSect-4.1 P-25PSSect-4.1 P-26PSSect-4.1 P-27PSSect-4.1 P-28PSSect-4.1 P-29PSSect-4.1 P-30PSSect-4.1 P-31PSSect-4.1 P-32PSSect-4.1 P-33PSSect-4.1 P-34PSSect-4.1 P-35PSSect-4.1 P-36PSSect-4.1 P-37PSSect-4.1 P-38PSSect-4.1 P-39PSSect-4.1 P-40PSSect-4.1 P-41PSSect-4.1 P-42PSSect-4.1 P-43PSSect-4.1 P-44PSSect-4.1 P-45PSSect-4.1 P-46PSSect-4.1 P-47PSSect-4.1 P-48PSSect-4.1 P-49PSSect-4.1 P-50PSSect-4.1 P-51PSSect-4.1 P-52PSSect-4.1 P-53PSSect-4.1 P-54PSSect-4.1 P-55PSSect-4.1 P-56PSSect-4.1 P-57PSSect-4.1 P-58PSSect-4.1 P-59PSSect-4.1 P-60PSSect-4.1 P-61PSSect-4.1 P-62PSSect-4.1 P-63PSSect-4.1 P-64PSSect-4.1 P-65PSSect-4.1 P-66PSSect-4.1 P-67PSSect-4.1 P-68PSSect-4.1 P-69PSSect-4.1 P-70PSSect-4.1 P-71PSSect-4.1 P-72PSSect-4.2 P-1CQSect-4.2 P-2CQSect-4.2 P-3CQSect-4.2 P-4CQSect-4.2 P-5CQSect-4.2 P-6CQSect-4.2 P-7CQSect-4.2 P-8CQSect-4.2 P-9CQSect-4.2 P-10CQSect-4.2 P-1PSSect-4.2 P-2PSSect-4.2 P-3PSSect-4.2 P-4PSSect-4.2 P-5PSSect-4.2 P-6PSSect-4.2 P-7PSSect-4.2 P-8PSSect-4.2 P-9PSSect-4.2 P-10PSSect-4.2 P-11PSSect-4.2 P-12PSSect-4.2 P-13PSSect-4.2 P-14PSSect-4.2 P-15PSSect-4.2 P-16PSSect-4.2 P-17PSSect-4.2 P-18PSSect-4.2 P-19PSSect-4.2 P-20PSSect-4.2 P-21PSSect-4.2 P-22PSSect-4.2 P-23PSSect-4.2 P-24PSSect-4.2 P-25PSSect-4.2 P-26PSSect-4.2 P-27PSSect-4.2 P-28PSSect-4.2 P-29PSSect-4.2 P-30PSSect-4.2 P-31PSSect-4.2 P-32PSSect-4.2 P-33PSSect-4.2 P-34PSSect-4.2 P-35PSSect-4.2 P-36PSSect-4.2 P-37PSSect-4.2 P-38PSSect-4.2 P-39PSSect-4.2 P-40PSSect-4.2 P-41PSSect-4.2 P-42PSSect-4.2 P-43PSSect-4.2 P-44PSSect-4.2 P-45PSSect-4.2 P-46PSSect-4.2 P-47PSSect-4.2 P-48PSSect-4.2 P-49PSSect-4.2 P-50PSSect-4.2 P-51PSSect-4.2 P-52PSSect-4.2 P-53PSSect-4.3 P-1CQSect-4.3 P-2CQSect-4.3 P-3CQSect-4.3 P-4CQSect-4.3 P-5CQSect-4.3 P-6CQSect-4.3 P-7CQSect-4.3 P-8CQSect-4.3 P-9CQSect-4.3 P-10CQSect-4.3 P-1PSSect-4.3 P-2PSSect-4.3 P-3PSSect-4.3 P-4PSSect-4.3 P-5PSSect-4.3 P-6PSSect-4.3 P-7PSSect-4.3 P-8PSSect-4.3 P-9PSSect-4.3 P-10PSSect-4.3 P-11PSSect-4.3 P-12PSSect-4.3 P-13PSSect-4.3 P-14PSSect-4.3 P-15PSSect-4.3 P-16PSSect-4.3 P-17PSSect-4.3 P-18PSSect-4.3 P-19PSSect-4.3 P-20PSSect-4.3 P-21PSSect-4.3 P-22PSSect-4.3 P-23PSSect-4.3 P-24PSSect-4.3 P-25PSSect-4.3 P-26PSSect-4.3 P-27PSSect-4.3 P-28PSSect-4.3 P-29PSSect-4.3 P-30PSSect-4.3 P-31PSSect-4.3 P-32PSSect-4.3 P-33PSSect-4.3 P-34PSSect-4.3 P-35PSSect-4.3 P-36PSSect-4.3 P-37PSSect-4.3 P-38PSSect-4.3 P-39PSSect-4.3 P-40PSSect-4.3 P-41PSSect-4.3 P-42PSSect-4.3 P-43PSSect-4.3 P-44PSSect-4.3 P-45PSSect-4.3 P-46PSSect-4.3 P-47PSSect-4.3 P-48PSSect-4.3 P-49PSSect-4.3 P-50PSSect-4.3 P-51PSSect-4.3 P-52PSSect-4.3 P-53PSSect-4.3 P-54PSSect-4.3 P-55PSSect-4.3 P-56PSSect-4.3 P-57PSSect-4.3 P-58PSSect-4.3 P-59PSSect-4.3 P-60PSSect-4.3 P-61PSSect-4.3 P-62PSSect-4.3 P-63PSSect-4.3 P-64PSSect-4.3 P-65PSSect-4.3 P-66PSSect-4.3 P-67PSSect-4.3 P-68PSSect-4.3 P-69PSSect-4.3 P-70PSSect-4.3 P-71PSSect-4.3 P-72PSSect-4.4 P-1CQSect-4.4 P-2CQSect-4.4 P-3CQSect-4.4 P-4CQSect-4.4 P-5CQSect-4.4 P-6CQSect-4.4 P-7CQSect-4.4 P-8CQSect-4.4 P-1PSSect-4.4 P-2PSSect-4.4 P-3PSSect-4.4 P-4PSSect-4.4 P-5PSSect-4.4 P-6PSSect-4.4 P-7PSSect-4.4 P-8PSSect-4.4 P-9PSSect-4.4 P-10PSSect-4.4 P-11PSSect-4.4 P-12PSSect-4.4 P-13PSSect-4.4 P-14PSSect-4.4 P-15PSSect-4.4 P-16PSSect-4.4 P-17PSSect-4.4 P-18PSSect-4.4 P-19PSSect-4.4 P-20PSSect-4.4 P-21PSSect-4.4 P-22PSSect-4.4 P-23PSSect-4.4 P-24PSSect-4.4 P-25PSSect-4.4 P-26PSSect-4.4 P-27PSSect-4.4 P-28PSSect-4.4 P-29PSSect-4.4 P-30PSSect-4.4 P-31PSSect-4.4 P-32PSSect-4.4 P-33PSSect-4.4 P-34PSSect-4.4 P-35PSSect-4.4 P-36PSSect-4.4 P-37PSSect-4.4 P-38PSSect-4.4 P-39PSSect-4.4 P-40PSSect-4.4 P-41PSSect-4.4 P-42PSSect-4.4 P-43PSSect-4.4 P-44PSSect-4.4 P-45PSSect-4.4 P-46PSSect-4.4 P-47PSSect-4.4 P-48PSSect-4.4 P-49PSSect-4.4 P-50PSSect-4.4 P-51PSSect-4.4 P-52PSSect-4.4 P-53PSSect-4.4 P-54PSSect-4.4 P-55PSSect-4.4 P-56PSSect-4.4 P-57PSSect-4.4 P-58PSSect-4.4 P-59PSSect-4.4 P-60PSSect-4.4 P-61PSSect-4.4 P-62PSSect-4.4 P-63PSSect-4.4 P-64PSSect-4.4 P-65PSSect-4.4 P-66PSSect-4.5 P-1CQSect-4.5 P-2CQSect-4.5 P-3CQSect-4.5 P-4CQSect-4.5 P-5CQSect-4.5 P-6CQSect-4.5 P-7CQSect-4.5 P-8CQSect-4.5 P-9CQSect-4.5 P-10CQSect-4.5 P-1PSSect-4.5 P-2PSSect-4.5 P-3PSSect-4.5 P-4PSSect-4.5 P-5PSSect-4.5 P-6PSSect-4.5 P-7PSSect-4.5 P-8PSSect-4.5 P-9PSSect-4.5 P-10PSSect-4.5 P-11PSSect-4.5 P-12PSSect-4.5 P-13PSSect-4.5 P-14PSSect-4.5 P-15PSSect-4.5 P-16PSSect-4.5 P-17PSSect-4.5 P-18PSSect-4.5 P-19PSSect-4.5 P-20PSSect-4.5 P-21PSSect-4.5 P-22PSSect-4.5 P-23PSSect-4.5 P-24PSSect-4.5 P-25PSSect-4.5 P-26PSSect-4.5 P-27PSSect-4.5 P-28PSSect-4.5 P-29PSSect-4.5 P-30PSSect-4.5 P-31PSSect-4.5 P-32PSSect-4.5 P-33PSSect-4.5 P-34PSSect-4.5 P-35PSSect-4.5 P-36PSSect-4.5 P-37PSSect-4.5 P-38PSSect-4.5 P-39PSSect-4.5 P-40PSSect-4.5 P-41PSSect-4.5 P-42PSSect-4.5 P-43PSSect-4.5 P-44PSSect-4.5 P-45PSSect-4.5 P-46PSSect-4.5 P-47PSSect-4.5 P-48PSSect-4.5 P-49PSSect-4.5 P-50PSSect-4.5 P-51PSSect-4.5 P-52PSSect-4.5 P-53PSSect-4.5 P-54PSSect-4.5 P-55PSSect-4.5 P-56PSSect-4.5 P-57PSSect-4.5 P-58PSSect-4.5 P-59PSSect-4.5 P-60PSSect-4.5 P-61PSSect-4.5 P-62PSSect-4.5 P-63PSSect-4.5 P-64PSSect-4.5 P-65PSSect-4.5 P-66PSSect-4.5 P-67PSSect-4.6 P-1CQSect-4.6 P-2CQSect-4.6 P-3CQSect-4.6 P-4CQSect-4.6 P-5CQSect-4.6 P-6CQSect-4.6 P-7CQSect-4.6 P-8CQSect-4.6 P-9CQSect-4.6 P-10CQSect-4.6 P-1PSSect-4.6 P-2PSSect-4.6 P-3PSSect-4.6 P-4PSSect-4.6 P-5PSSect-4.6 P-6PSSect-4.6 P-7PSSect-4.6 P-8PSSect-4.6 P-9PSSect-4.6 P-10PSSect-4.6 P-11PSSect-4.6 P-12PSSect-4.6 P-13PSSect-4.6 P-14PSSect-4.6 P-15PSSect-4.6 P-16PSSect-4.6 P-17PSSect-4.6 P-18PSSect-4.6 P-19PSSect-4.6 P-20PSSect-4.6 P-21PSSect-4.6 P-22PSSect-4.6 P-23PSSect-4.6 P-24PSSect-4.6 P-25PSSect-4.6 P-26PSSect-4.6 P-27PSSect-4.6 P-28PSSect-4.6 P-29PSSect-4.6 P-30PSSect-4.6 P-31PSSect-4.6 P-32PSSect-4.6 P-33PSSect-4.6 P-34PSSect-4.6 P-35PSSect-4.6 P-36PSSect-4.6 P-37PSSect-4.6 P-38PSSect-4.6 P-39PSSect-4.6 P-40PSSect-4.6 P-41PSSect-4.6 P-42PSSect-4.6 P-43PSSect-4.6 P-44PSSect-4.6 P-45PSSect-4.6 P-46PSSect-4.6 P-47PSSect-4.6 P-48PSSect-4.6 P-49PSSect-4.6 P-50PSSect-4.6 P-51PSSect-4.6 P-52PSSect-4.6 P-53PSSect-4.6 P-54PSSect-4.6 P-55PSSect-4.6 P-56PSSect-4.6 P-57PSSect-4.6 P-58PSSect-4.6 P-59PSSect-4.7 P-1CQSect-4.7 P-2CQSect-4.7 P-3CQSect-4.7 P-4CQSect-4.7 P-5CQSect-4.7 P-6CQSect-4.7 P-7CQSect-4.7 P-8CQSect-4.7 P-9CQSect-4.7 P-10CQSect-4.7 P-1PSSect-4.7 P-2PSSect-4.7 P-3PSSect-4.7 P-4PSSect-4.7 P-5PSSect-4.7 P-6PSSect-4.7 P-7PSSect-4.7 P-8PSSect-4.7 P-9PSSect-4.7 P-10PSSect-4.7 P-11PSSect-4.7 P-12PSSect-4.7 P-13PSSect-4.7 P-14PSSect-4.7 P-15PSSect-4.7 P-16PSSect-4.7 P-17PSSect-4.7 P-18PSSect-4.7 P-19PSSect-4.7 P-20PSSect-4.7 P-21PSSect-4.7 P-22PSSect-4.7 P-23PSSect-4.7 P-24PSSect-4.7 P-25PSSect-4.7 P-26PSSect-4.7 P-27PSSect-4.7 P-28PSSect-4.7 P-29PSSect-4.7 P-30PSSect-4.7 P-31PSSect-4.7 P-32PSSect-4.7 P-33PSSect-4.7 P-34PSSect-4.7 P-35PSSect-4.7 P-36PSSect-4.7 P-37PSSect-4.7 P-38PSSect-4.7 P-39PSSect-4.7 P-40PSSect-4.7 P-41PSSect-4.7 P-42PSSect-4.7 P-43PSSect-4.7 P-44PSSect-4.7 P-45PSSect-4.7 P-46PSSect-4.7 P-47PSSect-4.7 P-48PSSect-4.7 P-49PSSect-4.7 P-50PSSect-4.7 P-51PSSect-4.7 P-52PSSect-4.7 P-53PSSect-4.7 P-54PSSect-4.7 P-55PSSect-4.7 P-56PSSect-4.7 P-57PSSect-4.7 P-58PSSect-4.S P-1SSect-4.S P-2SSect-4.S P-3SSect-4.S P-4SSect-4.S P-5SSect-4.S P-6SSect-4.S P-7SSect-4.S P-8SSect-4.S P-9SSect-4.S P-10SSect-4.S P-11SSect-4.S P-12SSect-4.S P-13SSect-4.S P-14SSect-4.CR P-1CRSect-4.CR P-2CRSect-4.CR P-3CRSect-4.CR P-4CRSect-4.CR P-5CRSect-4.CR P-6CRSect-4.CR P-7CRSect-4.CR P-8CRSect-4.CR P-9CRSect-4.CR P-10CRSect-4.CR P-11CRSect-4.CR P-12CRSect-4.CR P-13CRSect-4.CR P-14CRSect-4.CR P-15CRSect-4.CR P-16CRSect-4.CR P-17CRSect-4.CR P-18CRSect-4.CR P-19CRSect-4.CR P-20CRSect-4.CR P-21CRSect-4.CR P-22CRSect-4.CR P-23CRSect-4.CR P-24CRSect-4.CR P-25CRSect-4.CR P-26CRSect-4.CR P-27CRSect-4.CR P-28CRSect-4.CR P-29CRSect-4.CR P-30CRSect-4.CR P-31CRSect-4.CR P-32CRSect-4.CR P-33CRSect-4.CR P-34CRSect-4.CR P-35CRSect-4.CR P-36CRSect-4.CR P-37CRSect-4.CR P-38CRSect-4.CR P-39CRSect-4.CR P-40CRSect-4.CR P-41CRSect-4.CR P-42CRSect-4.CR P-43CRSect-4.CR P-44CRSect-4.CR P-45CRSect-4.CR P-46CRSect-4.CR P-47CRSect-4.CR P-48CRSect-4.CR P-49CRSect-4.CR P-50CRSect-4.CR P-51CRSect-4.CR P-52CRSect-4.CR P-53CRSect-4.CR P-54CRSect-4.CT P-1CTSect-4.CT P-2CTSect-4.CT P-3CTSect-4.CT P-4CTSect-4.CT P-5CTSect-4.CT P-6CTSect-4.CT P-7CTSect-4.CT P-8CTSect-4.CT P-9CTSect-4.CT P-10CTSect-4.CT P-11CTSect-4.CT P-12CTSect-4.CT P-13CTSect-4.CT P-14CTSect-4.CT P-15CTSect-4.CT P-16CTSect-4.CT P-17CTSect-4.CT P-18CTSect-4.CT P-19CTSect-4.CT P-20CTSect-4.CT P-21CTSect-4.CT P-22CTSect-4.CT P-23CTSect-4.CT P-24CTSect-4.CT P-25CTSect-4.CM P-1CMSect-4.CM P-2CMSect-4.CM P-3CMSect-4.CM P-4CMSect-4.CM P-5CMSect-4.CM P-6CMSect-4.CM P-7CMSect-4.CM P-8CMSect-4.CM P-9CMSect-4.CM P-10CMSect-4.CM P-11CMSect-4.CM P-12CMSect-4.CM P-13CMSect-4.CM P-14CMSect-4.CM P-15CMSect-4.CM P-16CMSect-4.CM P-17CMSect-4.CM P-18CMSect-4.CM P-19CMSect-4.CM P-20CMSect-4.CM P-21CMSect-4.CM P-22CMSect-4.CM P-23CMSect-4.CM P-24CMSect-4.CM P-25CMSect-4.CM P-26CMSect-4.CM P-27CMSect-4.CM P-28CMSect-4.CM P-29CMSect-4.CM P-30CMSect-4.CM P-31CMSect-4.CM P-32CMSect-4.CM P-33CMSect-4.CM P-34CMSect-4.CM P-35CMSect-4.CM P-36CMSect-4.CM P-37CMSect-4.CM P-38CMSect-4.CM P-39CMSect-4.CM P-40CMSect-4.CM P-41CMSect-4.CM P-42CMSect-4.CM P-43CMSect-4.CM P-44CMSect-4.CM P-45CMSect-4.CM P-46CMSect-4.CM P-47CMSect-4.CM P-48CMSect-4.CM P-49CMSect-4.CM P-50CMSect-4.CM P-51CMSect-4.CM P-52CMSect-4.CM P-53CMSect-4.CM P-54CMSect-4.CM P-55CMSect-4.CM P-56CM

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 1-6, refer to the following figure, and determine the coordinates of each point and the quadrant i...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Factor each trinomial completely: a2+5a14

Elementary Technical Mathematics

35. Find the 83rd term of the arithmetic sequence with First term 6 and common difference .

Mathematical Applications for the Management, Life, and Social Sciences

Find f. f(x) = 1 6x + 48x2, f(0) = 1, f(0) = 2

Single Variable Calculus: Early Transcendentals

An integral for the solid obtained by rotating the region at the right about the x-axis is:

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

In Exercise 2532, find the inverse of the matrix if it exists. A=[124312106]

Finite Mathematics for the Managerial, Life, and Social Sciences