Intermediate Algebra

10th Edition
Jerome E. Kaufmann + 1 other
ISBN: 9781285195728



Intermediate Algebra

10th Edition
Jerome E. Kaufmann + 1 other
ISBN: 9781285195728
Textbook Problem

For Problems 53-64, use synthetic division to determine the quotient and remainder. (Objective 2)

( 2 x 4 + 3 x 2 + 3 ) ÷ ( x + 2 )

To determine

To Find:

The quotient and remainder of the polynomials by performing the synthetic division.



Division of a polynomial by binomial is done by using the synthetic division method.

In this method take the coefficients of the polynomial in the descending powers of variable and if any term is missing than a zero must be used in that place.

Equate the divisor to zero and take the variable value for division.

Bring down the first coefficient of the dividend.

Multiply the first coefficient of the dividend by the divisor and write that value under the dividend.

Find the result by adding or subtracting.

The obtained results multiplied by the divisor again, and write that value under the dividend.

Repeat the process till the last coefficient and simplify.

Convert the coefficients of the last row to an equation of the quotient by decreasing the variable exponent by 1 and the last value of the row represents the remainder.


Consider the expression (2x4+3x2+3)÷(x+2).

Here x3,x terms are missing so we take the coefficients as zero in that place.

First write the coefficients of the polynomial in the descending order.

They are 2,0,3,0,3.

Take the divisor and equate it to zero.

That is,


Add 2 on both sides of the equation.


Arrange the coefficients in the descending order and write the divisor in the following way and simplify.

22        0        3          0         3_

The calculation steps are as follows:

Bring down the leading coefficient 2 and multiply it with 2.

22        0        3          0         3                                        _    2                                        

The result is 4.

Write the result under the coefficient 0 and add.

The result is 4.

22        0        3          0         3         4                               _      2   4                                

Multiply the divisor 2 by 4.

Which is equals to 8, write the value under the coefficient 3.

The result is 11.

22        0        3          0         3         4      8                   _    2   4     11                  

Multiply the divisor 2 by 11

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-4.1 P-1PSSect-4.1 P-2PSSect-4.1 P-3PSSect-4.1 P-4PSSect-4.1 P-5PSSect-4.1 P-6PSSect-4.1 P-7PSSect-4.1 P-8PSSect-4.1 P-9PSSect-4.1 P-10PSSect-4.1 P-11PSSect-4.1 P-12PSSect-4.1 P-13PSSect-4.1 P-14PSSect-4.1 P-15PSSect-4.1 P-16PSSect-4.1 P-17PSSect-4.1 P-18PSSect-4.1 P-19PSSect-4.1 P-20PSSect-4.1 P-21PSSect-4.1 P-22PSSect-4.1 P-23PSSect-4.1 P-24PSSect-4.1 P-25PSSect-4.1 P-26PSSect-4.1 P-27PSSect-4.1 P-28PSSect-4.1 P-29PSSect-4.1 P-30PSSect-4.1 P-31PSSect-4.1 P-32PSSect-4.1 P-33PSSect-4.1 P-34PSSect-4.1 P-35PSSect-4.1 P-36PSSect-4.1 P-37PSSect-4.1 P-38PSSect-4.1 P-39PSSect-4.1 P-40PSSect-4.1 P-41PSSect-4.1 P-42PSSect-4.1 P-43PSSect-4.1 P-44PSSect-4.1 P-45PSSect-4.1 P-46PSSect-4.1 P-47PSSect-4.1 P-48PSSect-4.1 P-49PSSect-4.1 P-50PSSect-4.1 P-51PSSect-4.1 P-52PSSect-4.1 P-53PSSect-4.1 P-54PSSect-4.1 P-55PSSect-4.1 P-56PSSect-4.1 P-57PSSect-4.1 P-58PSSect-4.1 P-59PSSect-4.1 P-60PSSect-4.1 P-61PSSect-4.1 P-62PSSect-4.1 P-63PSSect-4.1 P-64PSSect-4.1 P-65PSSect-4.1 P-66PSSect-4.1 P-67PSSect-4.1 P-68PSSect-4.1 P-69PSSect-4.1 P-70PSSect-4.1 P-71PSSect-4.1 P-72PSSect-4.2 P-1CQSect-4.2 P-2CQSect-4.2 P-3CQSect-4.2 P-4CQSect-4.2 P-5CQSect-4.2 P-6CQSect-4.2 P-7CQSect-4.2 P-8CQSect-4.2 P-9CQSect-4.2 P-10CQSect-4.2 P-1PSSect-4.2 P-2PSSect-4.2 P-3PSSect-4.2 P-4PSSect-4.2 P-5PSSect-4.2 P-6PSSect-4.2 P-7PSSect-4.2 P-8PSSect-4.2 P-9PSSect-4.2 P-10PSSect-4.2 P-11PSSect-4.2 P-12PSSect-4.2 P-13PSSect-4.2 P-14PSSect-4.2 P-15PSSect-4.2 P-16PSSect-4.2 P-17PSSect-4.2 P-18PSSect-4.2 P-19PSSect-4.2 P-20PSSect-4.2 P-21PSSect-4.2 P-22PSSect-4.2 P-23PSSect-4.2 P-24PSSect-4.2 P-25PSSect-4.2 P-26PSSect-4.2 P-27PSSect-4.2 P-28PSSect-4.2 P-29PSSect-4.2 P-30PSSect-4.2 P-31PSSect-4.2 P-32PSSect-4.2 P-33PSSect-4.2 P-34PSSect-4.2 P-35PSSect-4.2 P-36PSSect-4.2 P-37PSSect-4.2 P-38PSSect-4.2 P-39PSSect-4.2 P-40PSSect-4.2 P-41PSSect-4.2 P-42PSSect-4.2 P-43PSSect-4.2 P-44PSSect-4.2 P-45PSSect-4.2 P-46PSSect-4.2 P-47PSSect-4.2 P-48PSSect-4.2 P-49PSSect-4.2 P-50PSSect-4.2 P-51PSSect-4.2 P-52PSSect-4.2 P-53PSSect-4.3 P-1CQSect-4.3 P-2CQSect-4.3 P-3CQSect-4.3 P-4CQSect-4.3 P-5CQSect-4.3 P-6CQSect-4.3 P-7CQSect-4.3 P-8CQSect-4.3 P-9CQSect-4.3 P-10CQSect-4.3 P-1PSSect-4.3 P-2PSSect-4.3 P-3PSSect-4.3 P-4PSSect-4.3 P-5PSSect-4.3 P-6PSSect-4.3 P-7PSSect-4.3 P-8PSSect-4.3 P-9PSSect-4.3 P-10PSSect-4.3 P-11PSSect-4.3 P-12PSSect-4.3 P-13PSSect-4.3 P-14PSSect-4.3 P-15PSSect-4.3 P-16PSSect-4.3 P-17PSSect-4.3 P-18PSSect-4.3 P-19PSSect-4.3 P-20PSSect-4.3 P-21PSSect-4.3 P-22PSSect-4.3 P-23PSSect-4.3 P-24PSSect-4.3 P-25PSSect-4.3 P-26PSSect-4.3 P-27PSSect-4.3 P-28PSSect-4.3 P-29PSSect-4.3 P-30PSSect-4.3 P-31PSSect-4.3 P-32PSSect-4.3 P-33PSSect-4.3 P-34PSSect-4.3 P-35PSSect-4.3 P-36PSSect-4.3 P-37PSSect-4.3 P-38PSSect-4.3 P-39PSSect-4.3 P-40PSSect-4.3 P-41PSSect-4.3 P-42PSSect-4.3 P-43PSSect-4.3 P-44PSSect-4.3 P-45PSSect-4.3 P-46PSSect-4.3 P-47PSSect-4.3 P-48PSSect-4.3 P-49PSSect-4.3 P-50PSSect-4.3 P-51PSSect-4.3 P-52PSSect-4.3 P-53PSSect-4.3 P-54PSSect-4.3 P-55PSSect-4.3 P-56PSSect-4.3 P-57PSSect-4.3 P-58PSSect-4.3 P-59PSSect-4.3 P-60PSSect-4.3 P-61PSSect-4.3 P-62PSSect-4.3 P-63PSSect-4.3 P-64PSSect-4.3 P-65PSSect-4.3 P-66PSSect-4.3 P-67PSSect-4.3 P-68PSSect-4.3 P-69PSSect-4.3 P-70PSSect-4.3 P-71PSSect-4.3 P-72PSSect-4.4 P-1CQSect-4.4 P-2CQSect-4.4 P-3CQSect-4.4 P-4CQSect-4.4 P-5CQSect-4.4 P-6CQSect-4.4 P-7CQSect-4.4 P-8CQSect-4.4 P-1PSSect-4.4 P-2PSSect-4.4 P-3PSSect-4.4 P-4PSSect-4.4 P-5PSSect-4.4 P-6PSSect-4.4 P-7PSSect-4.4 P-8PSSect-4.4 P-9PSSect-4.4 P-10PSSect-4.4 P-11PSSect-4.4 P-12PSSect-4.4 P-13PSSect-4.4 P-14PSSect-4.4 P-15PSSect-4.4 P-16PSSect-4.4 P-17PSSect-4.4 P-18PSSect-4.4 P-19PSSect-4.4 P-20PSSect-4.4 P-21PSSect-4.4 P-22PSSect-4.4 P-23PSSect-4.4 P-24PSSect-4.4 P-25PSSect-4.4 P-26PSSect-4.4 P-27PSSect-4.4 P-28PSSect-4.4 P-29PSSect-4.4 P-30PSSect-4.4 P-31PSSect-4.4 P-32PSSect-4.4 P-33PSSect-4.4 P-34PSSect-4.4 P-35PSSect-4.4 P-36PSSect-4.4 P-37PSSect-4.4 P-38PSSect-4.4 P-39PSSect-4.4 P-40PSSect-4.4 P-41PSSect-4.4 P-42PSSect-4.4 P-43PSSect-4.4 P-44PSSect-4.4 P-45PSSect-4.4 P-46PSSect-4.4 P-47PSSect-4.4 P-48PSSect-4.4 P-49PSSect-4.4 P-50PSSect-4.4 P-51PSSect-4.4 P-52PSSect-4.4 P-53PSSect-4.4 P-54PSSect-4.4 P-55PSSect-4.4 P-56PSSect-4.4 P-57PSSect-4.4 P-58PSSect-4.4 P-59PSSect-4.4 P-60PSSect-4.4 P-61PSSect-4.4 P-62PSSect-4.4 P-63PSSect-4.4 P-64PSSect-4.4 P-65PSSect-4.4 P-66PSSect-4.5 P-1CQSect-4.5 P-2CQSect-4.5 P-3CQSect-4.5 P-4CQSect-4.5 P-5CQSect-4.5 P-6CQSect-4.5 P-7CQSect-4.5 P-8CQSect-4.5 P-9CQSect-4.5 P-10CQSect-4.5 P-1PSSect-4.5 P-2PSSect-4.5 P-3PSSect-4.5 P-4PSSect-4.5 P-5PSSect-4.5 P-6PSSect-4.5 P-7PSSect-4.5 P-8PSSect-4.5 P-9PSSect-4.5 P-10PSSect-4.5 P-11PSSect-4.5 P-12PSSect-4.5 P-13PSSect-4.5 P-14PSSect-4.5 P-15PSSect-4.5 P-16PSSect-4.5 P-17PSSect-4.5 P-18PSSect-4.5 P-19PSSect-4.5 P-20PSSect-4.5 P-21PSSect-4.5 P-22PSSect-4.5 P-23PSSect-4.5 P-24PSSect-4.5 P-25PSSect-4.5 P-26PSSect-4.5 P-27PSSect-4.5 P-28PSSect-4.5 P-29PSSect-4.5 P-30PSSect-4.5 P-31PSSect-4.5 P-32PSSect-4.5 P-33PSSect-4.5 P-34PSSect-4.5 P-35PSSect-4.5 P-36PSSect-4.5 P-37PSSect-4.5 P-38PSSect-4.5 P-39PSSect-4.5 P-40PSSect-4.5 P-41PSSect-4.5 P-42PSSect-4.5 P-43PSSect-4.5 P-44PSSect-4.5 P-45PSSect-4.5 P-46PSSect-4.5 P-47PSSect-4.5 P-48PSSect-4.5 P-49PSSect-4.5 P-50PSSect-4.5 P-51PSSect-4.5 P-52PSSect-4.5 P-53PSSect-4.5 P-54PSSect-4.5 P-55PSSect-4.5 P-56PSSect-4.5 P-57PSSect-4.5 P-58PSSect-4.5 P-59PSSect-4.5 P-60PSSect-4.5 P-61PSSect-4.5 P-62PSSect-4.5 P-63PSSect-4.5 P-64PSSect-4.5 P-65PSSect-4.5 P-66PSSect-4.5 P-67PSSect-4.6 P-1CQSect-4.6 P-2CQSect-4.6 P-3CQSect-4.6 P-4CQSect-4.6 P-5CQSect-4.6 P-6CQSect-4.6 P-7CQSect-4.6 P-8CQSect-4.6 P-9CQSect-4.6 P-10CQSect-4.6 P-1PSSect-4.6 P-2PSSect-4.6 P-3PSSect-4.6 P-4PSSect-4.6 P-5PSSect-4.6 P-6PSSect-4.6 P-7PSSect-4.6 P-8PSSect-4.6 P-9PSSect-4.6 P-10PSSect-4.6 P-11PSSect-4.6 P-12PSSect-4.6 P-13PSSect-4.6 P-14PSSect-4.6 P-15PSSect-4.6 P-16PSSect-4.6 P-17PSSect-4.6 P-18PSSect-4.6 P-19PSSect-4.6 P-20PSSect-4.6 P-21PSSect-4.6 P-22PSSect-4.6 P-23PSSect-4.6 P-24PSSect-4.6 P-25PSSect-4.6 P-26PSSect-4.6 P-27PSSect-4.6 P-28PSSect-4.6 P-29PSSect-4.6 P-30PSSect-4.6 P-31PSSect-4.6 P-32PSSect-4.6 P-33PSSect-4.6 P-34PSSect-4.6 P-35PSSect-4.6 P-36PSSect-4.6 P-37PSSect-4.6 P-38PSSect-4.6 P-39PSSect-4.6 P-40PSSect-4.6 P-41PSSect-4.6 P-42PSSect-4.6 P-43PSSect-4.6 P-44PSSect-4.6 P-45PSSect-4.6 P-46PSSect-4.6 P-47PSSect-4.6 P-48PSSect-4.6 P-49PSSect-4.6 P-50PSSect-4.6 P-51PSSect-4.6 P-52PSSect-4.6 P-53PSSect-4.6 P-54PSSect-4.6 P-55PSSect-4.6 P-56PSSect-4.6 P-57PSSect-4.6 P-58PSSect-4.6 P-59PSSect-4.7 P-1CQSect-4.7 P-2CQSect-4.7 P-3CQSect-4.7 P-4CQSect-4.7 P-5CQSect-4.7 P-6CQSect-4.7 P-7CQSect-4.7 P-8CQSect-4.7 P-9CQSect-4.7 P-10CQSect-4.7 P-1PSSect-4.7 P-2PSSect-4.7 P-3PSSect-4.7 P-4PSSect-4.7 P-5PSSect-4.7 P-6PSSect-4.7 P-7PSSect-4.7 P-8PSSect-4.7 P-9PSSect-4.7 P-10PSSect-4.7 P-11PSSect-4.7 P-12PSSect-4.7 P-13PSSect-4.7 P-14PSSect-4.7 P-15PSSect-4.7 P-16PSSect-4.7 P-17PSSect-4.7 P-18PSSect-4.7 P-19PSSect-4.7 P-20PSSect-4.7 P-21PSSect-4.7 P-22PSSect-4.7 P-23PSSect-4.7 P-24PSSect-4.7 P-25PSSect-4.7 P-26PSSect-4.7 P-27PSSect-4.7 P-28PSSect-4.7 P-29PSSect-4.7 P-30PSSect-4.7 P-31PSSect-4.7 P-32PSSect-4.7 P-33PSSect-4.7 P-34PSSect-4.7 P-35PSSect-4.7 P-36PSSect-4.7 P-37PSSect-4.7 P-38PSSect-4.7 P-39PSSect-4.7 P-40PSSect-4.7 P-41PSSect-4.7 P-42PSSect-4.7 P-43PSSect-4.7 P-44PSSect-4.7 P-45PSSect-4.7 P-46PSSect-4.7 P-47PSSect-4.7 P-48PSSect-4.7 P-49PSSect-4.7 P-50PSSect-4.7 P-51PSSect-4.7 P-52PSSect-4.7 P-53PSSect-4.7 P-54PSSect-4.7 P-55PSSect-4.7 P-56PSSect-4.7 P-57PSSect-4.7 P-58PSSect-4.S P-1SSect-4.S P-2SSect-4.S P-3SSect-4.S P-4SSect-4.S P-5SSect-4.S P-6SSect-4.S P-7SSect-4.S P-8SSect-4.S P-9SSect-4.S P-10SSect-4.S P-11SSect-4.S P-12SSect-4.S P-13SSect-4.S P-14SSect-4.CR P-1CRSect-4.CR P-2CRSect-4.CR P-3CRSect-4.CR P-4CRSect-4.CR P-5CRSect-4.CR P-6CRSect-4.CR P-7CRSect-4.CR P-8CRSect-4.CR P-9CRSect-4.CR P-10CRSect-4.CR P-11CRSect-4.CR P-12CRSect-4.CR P-13CRSect-4.CR P-14CRSect-4.CR P-15CRSect-4.CR P-16CRSect-4.CR P-17CRSect-4.CR P-18CRSect-4.CR P-19CRSect-4.CR P-20CRSect-4.CR P-21CRSect-4.CR P-22CRSect-4.CR P-23CRSect-4.CR P-24CRSect-4.CR P-25CRSect-4.CR P-26CRSect-4.CR P-27CRSect-4.CR P-28CRSect-4.CR P-29CRSect-4.CR P-30CRSect-4.CR P-31CRSect-4.CR P-32CRSect-4.CR P-33CRSect-4.CR P-34CRSect-4.CR P-35CRSect-4.CR P-36CRSect-4.CR P-37CRSect-4.CR P-38CRSect-4.CR P-39CRSect-4.CR P-40CRSect-4.CR P-41CRSect-4.CR P-42CRSect-4.CR P-43CRSect-4.CR P-44CRSect-4.CR P-45CRSect-4.CR P-46CRSect-4.CR P-47CRSect-4.CR P-48CRSect-4.CR P-49CRSect-4.CR P-50CRSect-4.CR P-51CRSect-4.CR P-52CRSect-4.CR P-53CRSect-4.CR P-54CRSect-4.CT P-1CTSect-4.CT P-2CTSect-4.CT P-3CTSect-4.CT P-4CTSect-4.CT P-5CTSect-4.CT P-6CTSect-4.CT P-7CTSect-4.CT P-8CTSect-4.CT P-9CTSect-4.CT P-10CTSect-4.CT P-11CTSect-4.CT P-12CTSect-4.CT P-13CTSect-4.CT P-14CTSect-4.CT P-15CTSect-4.CT P-16CTSect-4.CT P-17CTSect-4.CT P-18CTSect-4.CT P-19CTSect-4.CT P-20CTSect-4.CT P-21CTSect-4.CT P-22CTSect-4.CT P-23CTSect-4.CT P-24CTSect-4.CT P-25CTSect-4.CM P-1CMSect-4.CM P-2CMSect-4.CM P-3CMSect-4.CM P-4CMSect-4.CM P-5CMSect-4.CM P-6CMSect-4.CM P-7CMSect-4.CM P-8CMSect-4.CM P-9CMSect-4.CM P-10CMSect-4.CM P-11CMSect-4.CM P-12CMSect-4.CM P-13CMSect-4.CM P-14CMSect-4.CM P-15CMSect-4.CM P-16CMSect-4.CM P-17CMSect-4.CM P-18CMSect-4.CM P-19CMSect-4.CM P-20CMSect-4.CM P-21CMSect-4.CM P-22CMSect-4.CM P-23CMSect-4.CM P-24CMSect-4.CM P-25CMSect-4.CM P-26CMSect-4.CM P-27CMSect-4.CM P-28CMSect-4.CM P-29CMSect-4.CM P-30CMSect-4.CM P-31CMSect-4.CM P-32CMSect-4.CM P-33CMSect-4.CM P-34CMSect-4.CM P-35CMSect-4.CM P-36CMSect-4.CM P-37CMSect-4.CM P-38CMSect-4.CM P-39CMSect-4.CM P-40CMSect-4.CM P-41CMSect-4.CM P-42CMSect-4.CM P-43CMSect-4.CM P-44CMSect-4.CM P-45CMSect-4.CM P-46CMSect-4.CM P-47CMSect-4.CM P-48CMSect-4.CM P-49CMSect-4.CM P-50CMSect-4.CM P-51CMSect-4.CM P-52CMSect-4.CM P-53CMSect-4.CM P-54CMSect-4.CM P-55CMSect-4.CM P-56CM

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 5-8, graph the given function or equation. f(x)=4xx2 with domain [0,4]

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 69-74, rationalize the numerator. 72. 2x3y3

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Divide: (13a5)(7a)

Elementary Technical Mathematics

If f(x) = sin 2x, an upper bound for |f(n + 1)(x)| is 2 2n 2n + 1 22n

Study Guide for Stewart's Multivariable Calculus, 8th

Sometimes, Always, or Never: If an ≥ bn ≥ 0 for all n and {bn} diverges, then {an} diverges.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th