BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

Review Exercises

Considering parallelograms, kites, rectangles, squares, rhombi, trapezoids, and isosceles trapezoids, which figures have
a) line symmetry?
b) point symmetry?

To determine

To Construct:

Check whether the quadrilaterals such as parallelogram, kites, rectangle, squares, rhombi, trapezoids and isosceles trapezoids are line symmetry and point symmetry.

Explanation

Definition:

A geometrical shape is said to be symmetrical if any line or point can reflect the portion on one side exactly same as the portion on the other side. If the symmetry is around a line, then that line is called line of symmetry and if the symmetry is around a point, then that line is called point of symmetry. A shape which has a point of symmetry is said to have a point symmetry.

Description:

Parallelogram:

1. Line Symmetry: No line symmetry.

2. Point Symmetry: Parallelogram possesses point symmetry with point of intersection of diagonals. That is, point symmetry at O.

Kites:

1. Line Symmetry: Possesses 1 line of symmetry. That is diagonal BD.

2. Point Symmetry: There is no point symmetry.

Rectangles:

1. Line Symmetry: Possesses 2 lines of symmetry. Line joins the mid-point of 2 parallel sides.

2. Point Symmetry: Possesses point symmetry with point of intersection of diagonals as the centre of symmetry.

Squares:

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-4.1 P-11ESect-4.1 P-12ESect-4.1 P-13ESect-4.1 P-14ESect-4.1 P-15ESect-4.1 P-16ESect-4.1 P-17ESect-4.1 P-18ESect-4.1 P-19ESect-4.1 P-20ESect-4.1 P-21ESect-4.1 P-22ESect-4.1 P-23ESect-4.1 P-24ESect-4.1 P-25ESect-4.1 P-26ESect-4.1 P-27ESect-4.1 P-28ESect-4.1 P-29ESect-4.1 P-30ESect-4.1 P-31ESect-4.1 P-32ESect-4.1 P-33ESect-4.1 P-34ESect-4.1 P-35ESect-4.1 P-36ESect-4.1 P-37ESect-4.1 P-38ESect-4.1 P-39ESect-4.1 P-40ESect-4.1 P-41ESect-4.1 P-42ESect-4.1 P-43ESect-4.1 P-44ESect-4.2 P-1ESect-4.2 P-2ESect-4.2 P-3ESect-4.2 P-4ESect-4.2 P-5ESect-4.2 P-6ESect-4.2 P-7ESect-4.2 P-8ESect-4.2 P-9ESect-4.2 P-10ESect-4.2 P-11ESect-4.2 P-12ESect-4.2 P-13ESect-4.2 P-14ESect-4.2 P-15ESect-4.2 P-16ESect-4.2 P-17ESect-4.2 P-18ESect-4.2 P-19ESect-4.2 P-20ESect-4.2 P-21ESect-4.2 P-22ESect-4.2 P-23ESect-4.2 P-24ESect-4.2 P-25ESect-4.2 P-26ESect-4.2 P-27ESect-4.2 P-28ESect-4.2 P-29ESect-4.2 P-30ESect-4.2 P-31ESect-4.2 P-32ESect-4.2 P-33ESect-4.2 P-34ESect-4.2 P-35ESect-4.2 P-36ESect-4.2 P-37ESect-4.2 P-38ESect-4.2 P-39ESect-4.2 P-40ESect-4.3 P-1ESect-4.3 P-2ESect-4.3 P-3ESect-4.3 P-4ESect-4.3 P-5ESect-4.3 P-6ESect-4.3 P-7ESect-4.3 P-8ESect-4.3 P-9ESect-4.3 P-10ESect-4.3 P-11ESect-4.3 P-12ESect-4.3 P-13ESect-4.3 P-14ESect-4.3 P-15ESect-4.3 P-16ESect-4.3 P-17ESect-4.3 P-18ESect-4.3 P-19ESect-4.3 P-20ESect-4.3 P-21ESect-4.3 P-22ESect-4.3 P-23ESect-4.3 P-24ESect-4.3 P-25ESect-4.3 P-26ESect-4.3 P-27ESect-4.3 P-28ESect-4.3 P-29ESect-4.3 P-30ESect-4.3 P-31ESect-4.3 P-32ESect-4.3 P-33ESect-4.3 P-34ESect-4.3 P-35ESect-4.3 P-36ESect-4.3 P-37ESect-4.3 P-38ESect-4.3 P-39ESect-4.3 P-40ESect-4.3 P-41ESect-4.3 P-42ESect-4.3 P-43ESect-4.3 P-44ESect-4.4 P-1ESect-4.4 P-2ESect-4.4 P-3ESect-4.4 P-4ESect-4.4 P-5ESect-4.4 P-6ESect-4.4 P-7ESect-4.4 P-8ESect-4.4 P-9ESect-4.4 P-10ESect-4.4 P-11ESect-4.4 P-12ESect-4.4 P-13ESect-4.4 P-14ESect-4.4 P-15ESect-4.4 P-16ESect-4.4 P-17ESect-4.4 P-18ESect-4.4 P-19ESect-4.4 P-20ESect-4.4 P-21ESect-4.4 P-22ESect-4.4 P-23ESect-4.4 P-24ESect-4.4 P-25ESect-4.4 P-26ESect-4.4 P-27ESect-4.4 P-28ESect-4.4 P-29ESect-4.4 P-30ESect-4.4 P-31ESect-4.4 P-32ESect-4.4 P-33ESect-4.4 P-34ESect-4.4 P-35ESect-4.4 P-36ESect-4.4 P-37ESect-4.4 P-38ESect-4.4 P-39ESect-4.4 P-40ESect-4.4 P-41ESect-4.4 P-42ESect-4.4 P-43ESect-4.4 P-44ESect-4.4 P-45ESect-4.CR P-1CRSect-4.CR P-2CRSect-4.CR P-3CRSect-4.CR P-4CRSect-4.CR P-5CRSect-4.CR P-6CRSect-4.CR P-7CRSect-4.CR P-8CRSect-4.CR P-9CRSect-4.CR P-10CRSect-4.CR P-11CRSect-4.CR P-12CRSect-4.CR P-13CRSect-4.CR P-14CRSect-4.CR P-15CRSect-4.CR P-16CRSect-4.CR P-17CRSect-4.CR P-18CRSect-4.CR P-19CRSect-4.CR P-20CRSect-4.CR P-21CRSect-4.CR P-22CRSect-4.CR P-23CRSect-4.CR P-24CRSect-4.CR P-25CRSect-4.CR P-26CRSect-4.CR P-27CRSect-4.CR P-28CRSect-4.CR P-29CRSect-4.CR P-30CRSect-4.CR P-31CRSect-4.CR P-32CRSect-4.CR P-33CRSect-4.CR P-34CRSect-4.CR P-35CRSect-4.CT P-1CTSect-4.CT P-2CTSect-4.CT P-3CTSect-4.CT P-4CTSect-4.CT P-5CTSect-4.CT P-6CTSect-4.CT P-7CTSect-4.CT P-8CTSect-4.CT P-9CTSect-4.CT P-10CTSect-4.CT P-11CTSect-4.CT P-12CTSect-4.CT P-13CTSect-4.CT P-14CTSect-4.CT P-15CTSect-4.CT P-16CTSect-4.CT P-17CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Proof Prove the second part of Theorem 2.9. limx01cosxx=0

Calculus: Early Transcendental Functions

Prove that (ab)(cd)=|acbcadbd|

Calculus (MindTap Course List)

In Exercises 4562, find the values of x that satisfy the inequality (inequalities). 60. 2x3x14

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

For f(x) = tanh1 2x, f(x) = a) 2(sech1 2x)2 b) 2(sech2 2x)1 c) 214x2 d) 114x2

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Describe the major elements of the APA ethical guidelines for nonhuman subjects in research.

Research Methods for the Behavioral Sciences (MindTap Course List)

Graph each rational function. f(x)=x(x1)2

College Algebra (MindTap Course List)