Fluid Mechanics: Fundamentals and Applications
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 109P

An oil pump is drawing 18 kW of electric power while pumping oil with p = 860 kg/m3 at a rate of 0.1 m3/s. The inlet and outlet diameters of the pipe are 8cm and 12 cm. respectively. If the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 95 percent, determine the mechanical efficiency of the pump. Take the kinetic energy correction factor to be 1.05.

Expert Solution & Answer
Check Mark
To determine

The mechanical efficiency of the pump.

Answer to Problem 109P

The mechanical efficiency of the pump is 62.22%.

Explanation of Solution

Given information:

The input electric power is 18kW, the density of oil is 860kg/m3, the volumetric flow rate of oil is 0.1m3/s, the inlet diameter is 8cm, the outlet diameter is 12cm, the pressure rise of oil is 250kPa, the kinetic energy correction factor is 1.05, and the motor efficiency is 95%

Write the expression for the Bernoulli's equation.

  m( P 1 ρ+α1 V 1 2 2+z1g)+Wpump=m( P 2 ρ+α1 V 2 2 2+z2g)Wpump=m( P 2 ρ+α1 V 2 2 2+z2g)m( P 1 ρ+α1 V 1 2 2+z1g)Wpump=m( P 2 P 1 ρ+α1( V 2 2 V 1 2 2 ))  .......(I)

Here, the pressure of the air before enter in the tunnel is P1, the pressure of air in the tunnel is P2, the velocity of air before enter in the tunnel is V1, the velocity of air in the tunnel is V2, the density of oil is ρ

  z1 and z1 are the elevation points, the pump input is Wpump, the energy correction factor at point 1 and point 2 are α1 and α2 respectively, the mass flow rate is m, and the gravity is g.

Write the expression for the mechanical efficiency of the pump.

  ηpump=WpumpWin,pump  .......(II)

Here, the work done by pump is Wpump, the inlet electric power is Win,pump.

Write the expression for the mechanical efficiency of motor.

  ηm=Wmot,outWmot,in  .......(III)

Here, the work done by motor is Wmot,out, the inlet electric power to the motor is Win,mot.

Write the expression for the velocity at inlet.

  V1=V˙π4D12  .......(IV)

Here, the volumetric flow rate is V˙ and the inlet diameter is D1.

Write the expression for the velocity at outlet.

  V2=V˙π4D22  .......(V)

Here, the outlet diameter is D2.

Write the expression for the mass flow rate.

  m=ρV˙  .......(VI)

Calculation:

Substitute 0.1m3/s for V˙ and 8cm for D1 in Equation (IV).

  V1=0.1 m 3/sπ4 ( 8cm )2=0.4 m 3/s3.14×64 cm2 ( 1m 100cm )2=19.90m/s

Substitute 0.1m3/s for V˙ and 12cm for D2 in Equation (V).

  V2=0.1 m 3/sπ4 ( 12cm )2=0.4 m 3/s3.14×144 cm2 ( 1m 100cm )2=8.84m/s

Substitute 0.1m3/s for V˙ and 860kg/m3 for ρ in Equation (VI).

  m=(860kg/ m 3)(0.1 m 3/s)m=86kg/s

Substitute 86kg/s for m, 250kPa for P2P1, 860kg/m3 for ρ, 1.05 for α1, 19.90m/s for V1 and 8.84m/s in Equation (I).

  Wpump=86kg/s( 250kPa 860 kg/ m 3 +1.05( ( 8.84m/s ) 2 ( 19.90m/s )2 2 ))Wpump=25kPam3/s( 1000N/ m 2 1kPa)14351.83kgm2/s3( 1N 1 kgm/ s 2 )Wpump=25000Nm/s14351.83Nm/sWpump=10648.17Nm/s

  Wpump=10648.17Nm/s( 1kW 1000 Nm/s )Wpump=10.64kW

Substitute 0.95 for ηm and 18kW for Win,mot in Equation (II).

  0.95=W mot,out18kWWmot,out=17.1kW

The output power from the motor is used to drive the motor.

  Wpump,in=17.1kW

Substitute, 10.64kW for Wpump, and 17.1kW for Wpump,in in Equation (II).

  ηpump=10.64kW17.1kW=0.6222=62.22%

Conclusion:

The mechanical efficiency of the pump is 62.22%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A pump draws 20 kW of electrical power while pumping oil with a density of 780 kg/m^3 at a flow rate of 0.3 m^3/s. The diameters of the inlet and outlet pipes of the pump are 7 cm and 12 cm, respectively. Since the pressure increase in the pump is 220 kPa and the motor efficiency is 91%, determine the mechanical efficiency of the pump. (Ignore the kinetic energy correction factor, α=1, Ignore the height differences inside the pump, the head loss in the pump hL=0.5)
A 78-percent efficient 12-hp pump is pumping water from a lake to a nearby pool at a rate of 1.2 ft3/s through a constant-diameter pipe. The free surface of the pool is 32 ft above that of the lake. Determine the irreversible head loss of the piping system, in ft, and the mechanical power used to overcome it.
A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at a rate of 0.04 m3/s and discharging it through a hose nozzle with an exit diameter of 5 cm. The total irreversible head loss of the system is 3 m, and the position of the nozzle is 3 m above sea level. For a pump efficiency of 70 percent, determine the required shaft power input to the pump and the water discharge velocity.

Chapter 5 Solutions

Fluid Mechanics: Fundamentals and Applications

Ch. 5 - A desktop computer is to be cooled by a fan whose...Ch. 5 - The minimum fresh air requirement of a residential...Ch. 5 - The ventilating fan of the bathroom of a building...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - Prob. 21PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Define pressure head, velocity head, and elevation...Ch. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 33CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 38CPCh. 5 - Prob. 39CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - Prob. 61PCh. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is the minimum diameter at section (1) to...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.040 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 4 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - The demand for electric power is usually much...Ch. 5 - Prob. 92PCh. 5 - Consider a fully filled hemisphere shaped tank...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The air in a 5m5-m3-m hospital room is to be...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - Prob. 100PCh. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0= 1 2-rn-diameter tank is initially filled...Ch. 5 - An oil pump is drawing 18 kW of electric power...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Consider a spherical tank containing compressed...Ch. 5 - A tank with openings 1,2, and 3 is moving to left...Ch. 5 - Two dimensionally identical containers are...Ch. 5 - A circular thin plate is placed on the top of a...Ch. 5 - A pump-storage plant uses a turbine to generate...Ch. 5 - A diffuser in a pipe flow is basically a slow...Ch. 5 - Prob. 117PCh. 5 - Prob. 118PCh. 5 - Prob. 119PCh. 5 - Air enters a steady-flow compressor at 1 atm and...Ch. 5 - A 7$-m-high water body that is open to the...Ch. 5 - Prob. 122PCh. 5 - Prob. 123PCh. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which one is not an assumption involved with the...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Liquid ethanol (p = 783 kg/m3) at a pressure of...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license