BuyFindarrow_forward

Contemporary Mathematics for Busin...

8th Edition
Robert Brechner + 1 other
ISBN: 9781305585447

Solutions

Chapter
Section
BuyFindarrow_forward

Contemporary Mathematics for Busin...

8th Edition
Robert Brechner + 1 other
ISBN: 9781305585447
Textbook Problem

Solve the following equations for the unknown and prove your solutions.

3 ( 2 C 5 ) = 45

To determine

To calculate: The value of unknown from the equation 3(2C5)=45 and prove the result.

Explanation

Given Information:

The provided equation is 3(2C5)=45.

Formula used:

To solve the equation and prove the solution, follow the steps as mentioned below.

Step 1: Rearrange the unknown values to the left side and known values to the right side of the

equation by using the following sequence of order to solve the equation.

(a) Paranthesis, if any then clear it before performing the next operations by mutiplying the coefficient with each term inside the paranthesis.

(b) In order to solve the equations with more than one operation, apply opposite operations from the provided operation in the equation, that is, addition if substraction is in the equation and multiplication if division is provided in the equation and vice versa.

Step 2: Prove the solution by substituting the value obtained from step 1 in the original equation then check the left and right of the equation if, they are equal then the answer is correct.

Calculation:

Consider the provided equation, 3(2C5)=45

Clear the Paranthesis by mutiplying the coefficient with each term inside the paranthesis,

3(2C)3(5)=456C15=45

To arrange the known values to the right side apply the opposite operation of subtraction, add 15 to both sides,

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-5.I P-1RESect-5.I P-2RESect-5.I P-3RESect-5.I P-4RESect-5.I P-5RESect-5.I P-6RESect-5.I P-7RESect-5.I P-8RESect-5.I P-9RESect-5.I P-10RESect-5.I P-11RESect-5.I P-12RESect-5.I P-13RESect-5.I P-14RESect-5.I P-15RESect-5.I P-16RESect-5.I P-17RESect-5.I P-18RESect-5.I P-19RESect-5.I P-20RESect-5.I P-21RESect-5.I P-22RESect-5.I P-23RESect-5.I P-24RESect-5.I P-25RESect-5.I P-26RESect-5.I P-27RESect-5.I P-28RESect-5.I P-29RESect-5.I P-30RESect-5.I P-31RESect-5.I P-32RESect-5.II P-11TIESect-5.II P-12TIESect-5.II P-13TIESect-5.II P-14TIESect-5.II P-15TIESect-5.II P-16TIESect-5.II P-17TIESect-5.II P-1RESect-5.II P-2RESect-5.II P-3RESect-5.II P-4RESect-5.II P-5RESect-5.II P-6RESect-5.II P-7RESect-5.II P-8RESect-5.II P-9RESect-5.II P-10RESect-5.II P-11RESect-5.II P-12RESect-5.II P-13RESect-5.II P-14RESect-5.II P-15RESect-5.II P-16RESect-5.II P-17RESect-5.II P-18RESect-5.II P-19RESect-5.II P-20RESect-5.II P-21RESect-5.II P-22RESect-5.II P-23RESect-5.II P-24RESect-5.II P-25RESect-5.II P-26RESect-5.II P-27RESect-5.II P-28RESect-5.II P-29RESect-5.II P-30RECh-5 P-1CRCh-5 P-2CRCh-5 P-3CRCh-5 P-4CRCh-5 P-5CRCh-5 P-6CRCh-5 P-7CRCh-5 P-8CRCh-5 P-9CRCh-5 P-10CRCh-5 P-11CRCh-5 P-12CRCh-5 P-13CRCh-5 P-14CRCh-5 P-1ATCh-5 P-2ATCh-5 P-3ATCh-5 P-4ATCh-5 P-5ATCh-5 P-6ATCh-5 P-7ATCh-5 P-8ATCh-5 P-9ATCh-5 P-10ATCh-5 P-11ATCh-5 P-12ATCh-5 P-13ATCh-5 P-14ATCh-5 P-15ATCh-5 P-16ATCh-5 P-17ATCh-5 P-18ATCh-5 P-19ATCh-5 P-20ATCh-5 P-21ATCh-5 P-22ATCh-5 P-23ATCh-5 P-24ATCh-5 P-25ATCh-5 P-26ATCh-5 P-27ATCh-5 P-28ATCh-5 P-29ATCh-5 P-30ATCh-5 P-31ATCh-5 P-32ATCh-5 P-33ATCh-5 P-34AT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate the integral. x2+x+1(x2+1)2dx

Calculus (MindTap Course List)

In Exercises 1-6, refer to the following figure, and determine the coordinates of each point and the quadrant i...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

2. Compute .

Mathematical Applications for the Management, Life, and Social Sciences

For y = 3x + tan x, y = _____. a) 3 + sec x b) 3x sec2 x + 3 tan x c) 3 + sec2 x d) x cos x + sin x

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th