Mechanics of Materials-Access
Mechanics of Materials-Access
9th Edition
ISBN: 9780133402735
Author: HIBBELER
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.143RP

The shaft is made of A992 steel and has an allowable shear stress of τallow = 75 MPa. When the shaft is rotating at 300 rpm, the motor supplies 8 kW of power, while gears A and B withdraw 5 kW and 3 kW, respectively. Determine the required minimum diameter of the shaft to the nearest millimeter. Also, find the rotation of gear A relative to C.

Chapter 5, Problem 5.143RP, The shaft is made of A992 steel and has an allowable shear stress of allow = 75 MPa. When the shaft

Expert Solution & Answer
Check Mark
To determine

The required minimum diameter of the shaft.

The angle of twist of gear A relative to gear C.

Answer to Problem 5.143RP

The required minimum diameter of the shaft is 26mm_.

The angle of twist of gear A relative to gear C is 2.11°_.

Explanation of Solution

Given information:

The allowable shear stress in the shaft is 75 MPa.

The motor supplies power of 8 kW.

Gear A and B withdraws power of 5 kW and 3 kW.

Shaft rotates at 300 rpm.

Calculation:

The expression for the power transmitted (P) by the shaft is shown below:

P=Tω (1)

Here, T is the applied torque and ω is the angular velocity of the shaft.

Rearrange Equation (1) to find the torque at A.

TA=PAω (2)

Here, PA is the power at gear A.

The expression for angular velocity of the shaft (ω) is shown below:

ω=2πf (3)

Here, f is the frequency of shaft’s rotation.

Substitute 300revmin for f in Equation (3).

ω=2π(300revmin)=2π(300revmin×1min60sec)=31.4159radsec

Substitute 5 kW for PA and 31.4159radsec for ω in Equation (2).

TA=5kW31.4159radsec=5kW(103W1kW)31.4159radsec=159.15Nm

Find the torque at C.

TC=PCω (4)

Here, PC is the power at gear C.

Substitute 8 kW for PC and 31.4159radsec for ω in Equation (4).

TC=8kW31.4159radsec=8kW(103W1kW)31.4159radsec=254.65Nm

Sketch the internal torque in the segment BC of the shaft as shown in Figure 1.

Mechanics of Materials-Access, Chapter 5, Problem 5.143RP , additional homework tip  1

Sketch the internal torque in the segment AB of the shaft as shown in Figure 2.

Mechanics of Materials-Access, Chapter 5, Problem 5.143RP , additional homework tip  2

Refer Figure 1 and Figure 2.

Segment BC of the shat is subjected to a greater internal torque of 254.65Nm.

The torsion formula for allowable maximum shear stress in the solid shaft (τallow) is shown below:

τallow=TBCcJ (5)

Here, TBC is the maximum torque in the segment BC, J is the polar moment of inertia, and c is the outer radius of the shaft.

The outer radius of the shaft is r.

The polar moment of inertia for a solid shaft of radius (r) is π2r4.

Substitute r for c and π2r4 for J in Equation (5).

τallow=TBCrπ2r4=2TBCπr3 (6)

Substitute 75 MPa for τallow and 254.65Nm for TBC in Equation (6).

75MPa=2(254.65Nm)π(30mm)375Nmm2=2(254.65Nm×103mm1m)π(r)3r3=2,161.4515r=13mm

The diameter of the shaft is twice the radius of the shaft. So the value of diameter is 26 mm.

Therefore, the required minimum diameter of the shaft is 26mm_.

Determine the angle of twist (ϕ) of the shaft using the relation:

ϕ=TLJG (7)

Here, L is the length of the shaft and G is the shear modulus of elasticity of the material.

Rearrange Equation (7) for angle of twist of gear A relative to gear C (ϕA/C).

ϕA/C=TLJG=(TABLAB+TBCLBC)JG (8)

Refer the properties of A992 steel.

The value of shear modulus of elasticity of A992 steel is 75 GPa.

The value of radius of the solid shaft is 13 mm.

Substitute π2r4 for J in Equation (8).

ϕA/C=(TABLAB+TBCLBC)(π2r4)G=2(TABLAB+TBCLBC)(πr4)G (9)

Refer Figure 2.

The torque in the region AB of the shaft is TAB=159.15Nm.

Refer Figure 1.

The torque in the region BC of the shaft is TBC=254.65Nm.

Substitute 159.15Nm for TAB, 300 mm for LAB, 254.65Nm for TBC, 300 mm for LBC, 13 mm for r, and 75 GPa for G in Equation (9).

ϕA/C=2((159.15Nm)(300mm)+(254.65Nm)(300mm))(π(13mm)4)(75GPa)=2((159.15Nm)(300mm×103m1mm)+(254.65Nm)(300mm×103m1mm))(π(13mm×103m1mm)4)(75GPa×109Nm21GPa)=0.03689rad=0.03689rad(180°πrad)

=2.11°

Therefore, the angle of twist of gear A relative to gear C is 2.11°_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The A-36 hollow steel shaft is 2 m long and has an outer diameter of 40 mm. When it is rotating at 80 rad>s, it transmits 32 kW of power from the engine E to the generator G. Determine the smallest thickness of the shaft if the allowable shear stress is tallow = 140 MPa and the shaft is restricted not to twist more than 0.05 rad.
The drive shaft of the motor is made of a material having an allowable shear stress of τallow= 72 MPa. the shaft is operating at an angular velocity of 1700 rev/min. Take ci= 0.75 co. A) If the motor is to deliver a power of 25 kW, determine the required minimum outer diameter of the tubular shaft to the nearest mm. Express your answer in millimeters. B)Determine the required corresponding inner diameter of the tubular shaft to the nearest mm. Express your answer in millimeters
The motor delivers 65 hp to the A36 steel shaft while it rotates at 1500 RPM.  The shaft is supported on smooth bearings at B and E, which allow free rotation of the shaft.  The gears C and D fixed to the shaft remove 70% and 30% of the power delivered by the motor, respectively.  Determine the diameter of the shaft to the nearest 1/8 in. if the allowable shear stress is ττallow = 12 ksi and the allowable angle of twist of D with respect to A is 0.25 degrees.

Chapter 5 Solutions

Mechanics of Materials-Access

Ch. 5.3 - The solid 50-mm-diameter shaft is subjected to the...Ch. 5.3 - The gear motor can develop 3 hp when it turns at...Ch. 5.3 - The solid shaft of radius r is subjected to a...Ch. 5.3 - The solid shaft of radius r is subjected to a...Ch. 5.3 - 5-3. The solid shaft is fixed to the support at C...Ch. 5.3 - The copper pipe has an outer diameter of 40 mm and...Ch. 5.3 - The copper pipe has an outer diameter of 2.50 in....Ch. 5.3 - Prob. 5.6PCh. 5.3 - Prob. 5.7PCh. 5.3 - The solid 30-mm-diameter shaft is used to transmit...Ch. 5.3 - The solid shaft is fixed to the support at C and...Ch. 5.3 - Prob. 5.10PCh. 5.3 - The assembly consists of two sections of...Ch. 5.3 - Prob. 5.12PCh. 5.3 - 5-13. If The tubular shaft is made from material...Ch. 5.3 - A steel tube having an outer diameter of 2.5 in....Ch. 5.3 - Prob. 5.15PCh. 5.3 - Prob. 5.16PCh. 5.3 - The rod has a diameter of 1 in. and a weight of 10...Ch. 5.3 - The rod has a diameter of 1 in. and a weight of 15...Ch. 5.3 - 5-19. The shaft consists of solid 80-mm-diameter...Ch. 5.3 - Prob. 5.20PCh. 5.3 - 5-21. If the 40-mm-diameter rod is subjected to a...Ch. 5.3 - Prob. 5.22PCh. 5.3 - Prob. 5.23PCh. 5.3 - Prob. 5.24PCh. 5.3 - Prob. 5.25PCh. 5.3 - Prob. 5.26PCh. 5.3 - Prob. 5.27PCh. 5.3 - Prob. 5.28PCh. 5.3 - Prob. 5.29PCh. 5.3 - Prob. 5.30PCh. 5.3 - The solid steel shaft AC has a diameter of 25 mm...Ch. 5.3 - The pump operates using the motor that has a power...Ch. 5.3 - Prob. 5.33PCh. 5.3 - Prob. 5.34PCh. 5.3 - Prob. 5.35PCh. 5.3 - Prob. 5.36PCh. 5.3 - Prob. 5.37PCh. 5.3 - Prob. 5.38PCh. 5.3 - Prob. 5.39PCh. 5.3 - Prob. 5.40PCh. 5.3 - The A-36 steel tubular shaft is 2 m long and has...Ch. 5.3 - Prob. 5.42PCh. 5.3 - The solid shaft has a linear taper from rA at one...Ch. 5.3 - *5-44. The rod has a diameter of 0.5 in. and...Ch. 5.3 - 5-45. Solve Prob. 5-44 for the maximum torsional...Ch. 5.3 - A motor delivers 500 hp to the shaft, which is...Ch. 5.4 - The 60 mm-diameter steel shaft is subjected to the...Ch. 5.4 - Prob. 5.10FPCh. 5.4 - The hollow 6061-T6 aluminum shaft has an outer and...Ch. 5.4 - A series of gears are mounted on the...Ch. 5.4 - The 80-mm-diameter shaft is made of steel. If it...Ch. 5.4 - The 80-mm-diameter shaft is made of steel. If it...Ch. 5.4 - The propellers of a ship are connected to an A-36...Ch. 5.4 - Show that the maximum shear strain in the shaft is...Ch. 5.4 - 5-49. The A-36 steel axle is made from tubes AB...Ch. 5.4 - Prob. 5.50PCh. 5.4 - Determine the maximum allowable torque T. Also,...Ch. 5.4 - If the allowable shear stress is allow = 80 MPa,...Ch. 5.4 - Prob. 5.53PCh. 5.4 - If gear B supplies 15 kW of power, while gears A,...Ch. 5.4 - If the shaft is made of steel with the allowable...Ch. 5.4 - *5-56. The A-36 steel axle is made from tubes AB...Ch. 5.4 - If the rotation of the 100-mm-diameter A-36 steel...Ch. 5.4 - If the rotation of the 100-mm-diameter A-36 steel...Ch. 5.4 - It has a diameter of 1 in. and is supported by...Ch. 5.4 - Prob. 5.60PCh. 5.4 - Prob. 5.61PCh. 5.4 - Prob. 5.62PCh. 5.4 - Prob. 5.63PCh. 5.4 - Prob. 5.64PCh. 5.4 - Prob. 5.65PCh. 5.4 - When it is rotating at 80 rad/s. it transmits 32...Ch. 5.4 - It is required to transmit 35 kW of power from the...Ch. 5.4 - Prob. 5.68PCh. 5.4 - If a torque of T = 50 N m is applied to the bolt...Ch. 5.4 - If a torque of T= 50N m is applied to the bolt...Ch. 5.4 - Prob. 5.72PCh. 5.4 - If the shaft is subjected to a torque T at its...Ch. 5.4 - Prob. 5.74PCh. 5.4 - Prob. 5.75PCh. 5.4 - *5-76. A cylindrical spring consists of a rubber...Ch. 5.5 - Gst = 75 GPa.Ch. 5.5 - The A992 steel shaft has a diameter of 60 mm and...Ch. 5.5 - If the shaft is fixed at its ends A and B and...Ch. 5.5 - Prob. 5.80PCh. 5.5 - Prob. 5.81PCh. 5.5 - 5-82. The shaft is made from a solid steel section...Ch. 5.5 - 5-83. The motor A develops a torque at gear B of...Ch. 5.5 - If the allowable shear stresses for the magnesium...Ch. 5.5 - If a torque of T = 5 kNm is applied to end A,...Ch. 5.5 - Each has a diameter of 25 mm and they are...Ch. 5.5 - Each has a diameter of 25 mm and they are...Ch. 5.5 - It is fixed at its ends and subjected to a torque...Ch. 5.5 - 5–89. Determine the absolute maximum shear stress...Ch. 5.5 - The shaft is subjected to a torque of 800 lbft....Ch. 5.5 - Prob. 5.91PCh. 5.5 - The shaft is made of 2014-T6 aluminum alloy and is...Ch. 5.5 - The tapered shaft is confined by the fixed...Ch. 5.5 - Determine the reactions at the fixed supports A...Ch. 5.7 - 5-95. The aluminum rod has a square cross section...Ch. 5.7 - Prob. 5.96PCh. 5.7 - Prob. 5.97PCh. 5.7 - If it is subjected to the torsional loading,...Ch. 5.7 - Solve Prob.5-98 for the maximum shear stress...Ch. 5.7 - determine the maximum shear stress in the shaft....Ch. 5.7 - If the shaft has an equilateral triangle cross...Ch. 5.7 - 5-102. The aluminum strut is fixed between the two...Ch. 5.7 - is applied to the tube If the wall thickness is...Ch. 5.7 - If it is 2 m long, determine the maximum shear...Ch. 5.7 - Also, find the angle of twist of end B. The shaft...Ch. 5.7 - Also, find the corresponding angle of twist at end...Ch. 5.7 - If the solid shaft is made from red brass C83400...Ch. 5.7 - If the solid shaft is made from red brass C83400...Ch. 5.7 - The tube is 0.1 in. thick.Ch. 5.7 - 5-110. For a given maximum average shear stress,...Ch. 5.7 - 5-111. A torque T is applied to two tubes having...Ch. 5.7 - By what percentage is the torsional strength...Ch. 5.7 - 5-113. Determine the constant thickness of the...Ch. 5.7 - 5-114. Determine the torque T that can be applied...Ch. 5.7 - If the allowable shear stress is allow = 8 ksi,...Ch. 5.7 - *5-116. The tube is made of plastic, is 5 mm...Ch. 5.7 - 5–117. The mean dimensions of the cross section of...Ch. 5.7 - 5–118. The mean dimensions of the cross section of...Ch. 5.7 - If it is subjected to a torque of T = 40 Nm....Ch. 5.10 - If the transition between the cross sections has a...Ch. 5.10 - 5–121. The step shaft is to be designed to rotate...Ch. 5.10 - Prob. 5.122PCh. 5.10 - 5–123. The transition at the cross sections of the...Ch. 5.10 - *5–124. The steel used for the step shaft has an...Ch. 5.10 - 5–125. The step shaft is subjected to a torque of...Ch. 5.10 - Determine the radius of the elastic core produced...Ch. 5.10 - Assume that the material becomes fully plastic.Ch. 5.10 - diameter is subjected to a torque of 100 in.kip....Ch. 5.10 - Determine the torque T needed to form an elastic...Ch. 5.10 - Determine the torque applied to the shaft.Ch. 5.10 - 5–131. An 80-mm-diameter solid circular shaft is...Ch. 5.10 - Determine the ratio of the plastic torque Tp to...Ch. 5.10 - 5–133. If the step shaft is elastic-plastic as...Ch. 5.10 - 5–134. The solid shaft is made from an...Ch. 5.10 - 5–135. A 1.5-in.-diameter shaft is made from an...Ch. 5.10 - *5–136. The tubular shaft is made of a...Ch. 5.10 - 5–137. The shaft is made from a strain-hardening...Ch. 5.10 - 5–138. The tube is made of elastic-perfectly...Ch. 5.10 - Determine the torque required to cause a maximum...Ch. 5.10 - *5–140. The 2-m-long tube is made of an...Ch. 5.10 - is made from an elastic perfectly plastic material...Ch. 5.10 - 5–142. The 2-m-long lube is made from an...Ch. 5 - The shaft is made of A992 steel and has an...Ch. 5 - The shaft is made of A992 steel and has an...Ch. 5 - Determine the shear stress at the mean radius p =...Ch. 5 - If the thickness of its 2014-T6-aluminum skin is...Ch. 5 - Determine which shaft geometry will resist the...Ch. 5 - If couple forces P = 3 kip are applied to the...Ch. 5 - If the allowable shear stress for the aluminum is...Ch. 5 - Determine the angle of twist of its end A if it is...Ch. 5 - This motion is caused by the unequal belt tensions...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License