
College Physics
7th Edition
ISBN: 9780321601834
Author: Jerry D. Wilson, Anthony J. Buffa, Bo Lou
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 57E
(a)
To determine
The value of the spring constant.
(b)
To determine
The mass added to stretch the spring an additional distance of
(c)
To determine
The change in potential energy when the additional mass is added.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An electron with kinetic energy K is traveling along the
positive x-axis, which is along the axis of a cathode-ray tube,
as shown in the figure. There is an electric field
E = 15.0 × 104 N/C pointed in the positive y-direction
between the deflection plates, which are 0.0600 m long and
are separated by 0.0200 m.
Determine the minimum kinetic energy Kmin the electron can
have and still avoid colliding with one of the plates.
Kmin
=
12
Ē
L
d
x
J
A small 2.85 g plastic ball that has a charge q = 1.75 C is
suspended by a string that has a length L = 1.00 m in a
uniform electric field, as shown in the figure.
If the ball is in equilibrium when the string makes a
0 = 9.80° angle with the vertical, what is the electric field
strength E?
| L
E =
N/C
|
Ꮎ
q
Ē
A less than youthful 80.6 kg physics professor decides to run the 26.2 mile (42.195 km) Los Angeles Marathon. During his months of training, he realizes that one important component in running a successful marathon is carbo-loading, the consumption of a sufficient
quantity of carbohydrates prior to the race that the body can store as glycogen to burn during the race. The typical energy requirement for runners is 1 kcal/km per kilogram of body weight, and each mole of oxygen intake allows for the release of 120 kcal of energy by
oxidizing (burning) glycogen.
(a) If the professor finishes the marathon in 5:15:00 h, what is the professor's oxygen intake rate, in liters per minute, during the race if he metabolizes all of the carbo-loaded glycogen during the race and the ambient temperature is 21.5°C?
2.02
×
Read the problem statement again carefully. Is the air at standard temperature and pressure during the marathon? How would this affect the volume of 1 mol of oxygen? L/min
(b) The…
Chapter 5 Solutions
College Physics
Ch. 5 - Prob. 1MCQCh. 5 - Prob. 2MCQCh. 5 - Prob. 3MCQCh. 5 - Work done in free fall (a) is only positive, (b)...Ch. 5 - Which one of the following has units of work: (a)...Ch. 5 - Prob. 6MCQCh. 5 - Which of the following is a scalar quantity: (a)...Ch. 5 - Prob. 8MCQCh. 5 - Prob. 9MCQCh. 5 - Prob. 10MCQ
Ch. 5 - A change in gravitational potential energy (a) is...Ch. 5 - The change in gravitational potential energy can...Ch. 5 - Prob. 13MCQCh. 5 - Prob. 14MCQCh. 5 - Prob. 15MCQCh. 5 - Prob. 16MCQCh. 5 - Prob. 17MCQCh. 5 - If the two springs in Exercise 17 are compressed...Ch. 5 - Prob. 19MCQCh. 5 - Prob. 20MCQCh. 5 - Which of the following is not a unit of power: (a)...Ch. 5 - Consider a 2.0-hp motor and a 1.0-hp motor....Ch. 5 - Prob. 1CQCh. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Prob. 13CQCh. 5 - Prob. 14CQCh. 5 - For a classroom demonstration, a bowling ball...Ch. 5 - Prob. 16CQCh. 5 - Prob. 17CQCh. 5 - If the two springs in Exercise 17 are compressed...Ch. 5 - (a) Does efficiency describe how fast work is...Ch. 5 - Two students who weigh the same start at the same...Ch. 5 - Prob. 1ECh. 5 - Prob. 2ECh. 5 - Prob. 3ECh. 5 - Prob. 4ECh. 5 - Prob. 5ECh. 5 - A father pulls his young daughter on a sled with a...Ch. 5 - A father pushes horizontally on his daughter’s...Ch. 5 - Prob. 8ECh. 5 - Prob. 9ECh. 5 - A crate is dragged 3.0 m along a rough floor with...Ch. 5 - A hot-air balloon ascends at a constant rate. (a)...Ch. 5 - Prob. 12ECh. 5 - An eraser with a mass of 100 g sits on a book at...Ch. 5 - Prob. 14ECh. 5 - Prob. 15ECh. 5 - Prob. 17ECh. 5 - Prob. 18ECh. 5 - Prob. 19ECh. 5 - Prob. 20ECh. 5 - A certain amount of work is required to stretch a...Ch. 5 - Compute the work done by the variable force in the...Ch. 5 - Prob. 23ECh. 5 - In gravity-free interstellar space, a spaceship...Ch. 5 - A particular spring has a force constant of 2.5 ×...Ch. 5 - Prob. 26ECh. 5 - In stretching a spring in an experiment, a student...Ch. 5 - Prob. 28ECh. 5 - Prob. 29ECh. 5 - A 1200-kg automobile travels at 90 km/h. (a) What...Ch. 5 - Prob. 31ECh. 5 - Prob. 32ECh. 5 - Prob. 33ECh. 5 - Prob. 34ECh. 5 - Prob. 35ECh. 5 - Prob. 36ECh. 5 - Compute the work done by the variable force in the...Ch. 5 - Prob. 38ECh. 5 - Prob. 39ECh. 5 - The floor of the basement of a house is 3.0 m...Ch. 5 - A 0.50-kg mass is placed on the end of a vertical...Ch. 5 - Prob. 42ECh. 5 - A student has six textbooks, each with a thickness...Ch. 5 - A 1.50-kg mass is placed on the end of a spring...Ch. 5 - Suppose the simple pendulum in Exercise 54 were...Ch. 5 - Prob. 46ECh. 5 - Prob. 47ECh. 5 - Prob. 48ECh. 5 - A 1.00-kg block (M) is on a flat frictionless...Ch. 5 - Prob. 50ECh. 5 - A 0.20-kg rubber ball is dropped from a height of...Ch. 5 - Prob. 52ECh. 5 - Prob. 53ECh. 5 - Prob. 54ECh. 5 - Suppose the simple pendulum in Exercise 54 were...Ch. 5 - A 1.5-kg box that is sliding on a frictionless...Ch. 5 - A 0.50-kg mass is suspended on a spring that...Ch. 5 - A vertical spring with a force constant of 300 N/m...Ch. 5 - A block with a mass m1 = 6.0 kg sitting on a...Ch. 5 - A hiker plans to swing on a rope across a ravine...Ch. 5 - Prob. 61ECh. 5 - Prob. 62ECh. 5 - Prob. 63ECh. 5 - Prob. 64ECh. 5 - Prob. 65ECh. 5 - A pump lifts 200 kg of water per hour a height of...Ch. 5 - Prob. 67ECh. 5 - Prob. 68ECh. 5 - Prob. 69ECh. 5 - How much power must you exert to horizontally drag...Ch. 5 - Prob. 71ECh. 5 - Prob. 72ECh. 5 - Prob. 73ECh. 5 - Prob. 74ECh. 5 - A 200-g ball is launched from a height of 20.0 m...Ch. 5 - Prob. 76ECh. 5 - Prob. 77ECh. 5 - Prob. 78ECh. 5 - IE A 0.455-kg soccer ball is kicked off level...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are using a microscope to view a dust particle suspended in a drop of water on a microscope slide. As water molecules bombard the particle, it "jitters" about in a random motion (Brownian motion). The particle's average kinetic energy is the same as 3 that of a molecule in an ideal gas (K = The particle (assumed to be spherical) has a density of 350 kg/m³ in water at 23°C. 2 BT). (a) If the particle has a diameter d, determine an expression for its rms speed in terms of the diameter d. (Enter your answer as a multiple of d−3/2. Assume v is in m/s and d-3/2 is in m−3/2. Do not include units in your answer.) rms V. = rms rms Obtain an expression for v by equating the expression for the kinetic energy of the particle in terms of v obtain an expression for the mass of the particle in terms of its diameter. d-3/2 rms to the expression for the average kinetic energy of a molecule. Knowing the density of the particle and assuming it is a sphere, we can (b) Assuming the particle moves at a…arrow_forwardYou are watching a new bridge being built near your house. You notice during the construction that two concrete spans of the bridge of total length L; = 270 m are placed end to end so that no room is allowed for expansion (figure (a)). In the opening storyline for the thermodynamics chapter, we talked about buckling sidewalks. The same thing will happen with spans on bridges if allowance is not made for expansion (figure (b)). You want to warn the construction crew about this dangerous situation, so you calculate the height y to which the spans will rise when they buckle in response to a temperature increase of AT = 19.0°C. a b T T+AT y = Ider Enter a number. made by one span, with its thermally expanded length as the hypotenuse.arrow_forwardAn open cylinder of air has a radius of 38.0 cm and a height of 50.0 cm, as shown in figure (a). 50.0 cm Ah The air pressure is 1.00 atm and the temperature is 13.5°C. A 25.0 kg piston is then lowered onto the cylinder, forming an airtight seal, as shown in figure (b). The air inside is compressed until the piston reaches equilibrium (mechanical and thermal), and at this point the piston is a height h; from the bottom of the cylinder. Lastly, a 27.5 kg dog steps onto the piston, and the air in the cylinder again compresses, as show in figure (c). After reaching equilibrium, the air inside is again at 13.5°C, and the height of the piston decreases a distance Ah as shown. (a) What is the distance Ah (in mm) that the piston moves when the dog is on it? mm (b) To what temperature (in °C) should the gas be warmed to raise the piston and the dog back to h;? °Carrow_forward
- Two horizontal wires are joined end to end, each with a diameter of 2.000 mm. The two joined wires are connected to fixed points a total distance of 4.00000 m apart. When both wires are at a temperature of 43.0°C, each wire has an unstretched length of 2.00000 m, and the tension in each is negligible. The first wire is made of steel and extends from x = -2.00000 m to x = 0, and the second is made of brass and extends from x = 0 to x = 2.00000 m. The temperature of both wires is then lowered to 18.0°C, and the wires stay joined together as they cool. The steel wire is composed of an alloy that has an average coefficient of linear expansion of 1.10 x 10-5 (°C) -1 and a Young's modulus of 2.00 x 1011 N/m². The brass wire is composed of an alloy that has an average coefficient of linear expansion of 1.90 x 10-5 (°C)¹ and a Young's modulus of 9.10 x 10 10 N/m². (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your…arrow_forward! Required information The radius of the Moon is 1.737 Mm and the distance between Earth and the Moon is 384.5 Mm. The intensity of the moonlight incident on her eye is 0.0220 W/m². What is the intensity incident on her retina if the diameter of her pupil is 6.54 mm and the diameter of her eye is 1.94 cm? W/m²arrow_forwardRequired information An object is placed 20.0 cm from a converging lens with focal length 15.0 cm (see the figure, not drawn to scale). A concave mirror with focal length 10.0 cm is located 76.5 cm to the right of the lens. Light goes through the lens, reflects from the mirror, and passes through the lens again, forming a final image. Converging lens Object Concave mirror 15.0 cm -20.0 cm- 10.0 cm d cm d = 76.5. What is the location of the final image? cm to the left of the lensarrow_forward
- ! Required information A man requires reading glasses with +2.15-D refractive power to read a book held 40.0 cm away with a relaxed eye. Assume the glasses are 1.90 cm from his eyes. His uncorrected near point is 1.00 m. If one of the lenses is the one for distance vision, what should the refractive power of the other lens (for close-up vision) in his bifocals be to give him clear vision from 25.0 cm to infinity? 2.98 Darrow_forward! Required information Assume that the magnifier is held close to the eye. Use the standard near point of 25.0 cm to find the angular magnification. An insect that is 4.10 mm long is placed 10.3 cm from a simple magnifier with a focal length of 13.0 cm. What is the angular magnification?arrow_forward2arrow_forward
- 3arrow_forwardImagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardDeduce what overvoltage is like in reversible electrodes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY