Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.5, Problem 127P
To determine

The final temperature in the balloon.

Expert Solution & Answer
Check Mark

Answer to Problem 127P

The final temperature in the balloon is 315K.

Explanation of Solution

Write the equation of mass balance.

minme=Δmsystem (I)

Here, the inlet mass is min, the exit mass is me and the change in mass of the system is Δmsystem.

The change in mass of the system for the control volume is expressed as,

Δmsystem=(m2m1)cv

Here, the suffixes 1 and 2 indicates the initial and final states of the system.

Consider the given balloon as the control volume. Initially the balloon is filled with helium and connected to the supply line with the valve, the valve is opened, and helium is allowed to enter the balloon until it reaches the pressure of supply line. No mass is allowed to exit the balloon i.e. me=0.

Rewrite the Equation (I) as follows.

min0=(m2m1)cvmin=m2m1 (II)

Write the formula for initial and final masses.

m1=P1ν1RT1 (III)

m2=P2ν2RT2 (IV)

Here, the pressure is P, the volume is ν, the gas constant of is R, the temperature is T and the subscripts 1 and 2 indicates the initial and final states.

Write the pressure and volume relation as follows.

P1P2=ν1ν2 (V)

Write the energy balance equation.

EinEout=ΔEsystem{[Qin+Win+min(h+ke+pe)in][Qe+We+me(h+ke+pe)e]}=[m2(u+ke+pe)2m1(u+ke+pe)1]system (VI)

Here, the heat transfer is Q, the work transfer is W, the enthalpy is h, the internal energy is u, the kinetic energy is ke, the potential energy is pe and the change in net energy of the system is ΔEsystem; the suffixes 1 and 2 indicates the inlet and outlet of the system.

The balloon expands when further helium is filled and the boundary work is done. i.e. Win=0,We=Wb,out. There is no heat transfer .i.e. Qin=Qe=0. Neglect the kinetic and potential energy changes i.e. (Δke=Δpe=0).

The Equation (VI) reduced as follows.

minhinWb,out=m2u2m1u1Wb,out=minhinm2u2+m1u1 (VII)

Write the general formula for boundary work by the helium (expansion of balloon).

Wb,out=PΔν=(P1+P22)(ν2+ν1) (VIII)

Write the general expressions for enthalpy and internal energy.

h=cpTu=cvT

Here, the specific heat at constant pressure is cp, the specific heat at constant volume is cv and the temperature is T.

Rewrite the equation (VII) as follows with reference to the general expression of enthalpy and internal energy.

Wb,out=mincpTinm2cvT2+m1cvT1 (IX)

Refer Table A-1, “Molar mass, gas constant, and critical-point properties”.

The gas constant (R) of helium is 2.0769kPa.m3/kgK.

Refer Table A-2 (a), “Ideal-gas specific heats of various common gases”.

The specific heat at constant pressure (cp) is 5.1926kJ/kgK and the specific heat at constant volume (cv) is 3.1156kJ/kgK.

Conclusion:

Substitute 100kPa for P1, 40m3 for ν1, 2.0769kPa.m3/kgK for R, and 17°C for T1 in Equation (III).

m1=(100kPa)(40m3)(2.0769kPa.m3/kgK)(17°C)=(100kPa)(40m3)(2.0769kPa.m3/kgK)(17+273)K=4000kPa.m3602.301kPa.m3/kg=6.6412kg

Substitute 100kPa for P1, 125kPa for P2, 40m3 for ν1 in Equation (V)

100kPa125kPa=40m3ν2ν2=(40m3)(125kPa)100kPa=50m3

Substitute 125kPa for P2, 50m3 for ν2 and 2.0769kPa.m3/kgK for R in Equation (IV).

m2=(125kPa)(50m3)(2.0769kPa.m3/kgK)T2=3009.2927T2kg

Substitute 3009.2927T2kg for m2 and 6.6412kg for m1 in Equation (II).

min=3009.2927T2kg6.6412kg

Substitute 100kPa for P1, 125kPa for P2, 40m3 for ν1 and 50m3 for ν2 in Equation (VIII).

Wb,out=(100kPa+125kPa2)(50m340m3)=1125kPam3=1125kPam3×1kJ1kPam3=1125kJ

Substitute 1125kJ for Wb,out, 3009.2927T2kg6.6412kg for min, 5.1926kJ/kgK for cp, 25°C for Tin, 3009.2927T2kg for m2, 3.1156kJ/kgK for cv, 6.6412kg for m1, 3.1156kJ/kgK for cv, and 17°C for T1, in Equation (IX).

1125kJ=[(3009.2927T2kg6.6412kg)(5.1926kJ/kgK)(25°C)(3009.2927T2kg)(3.1156kJ/kgK)T2+(6.6412kg)(3.1156kJ/kgK)(17°C)]1125kJ=[(3009.2927T2kg6.6412kg)(5.1926kJ/kgK)(25+273)K(3009.2927T2kg)(3.1156kJ/kgK)T2+(6.6412kg)(3.1156kJ/kgK)(17+273)K]1125kJ=[(3009.2927T2kg6.6412kg)(1547.3948kJ/kg)9375.7523kJ+6000.4836kJ]1125kJ=[(3009.2927T2(1547.3948kJ))(6.6412kg)(1547.3948kJ/kg)3375.2687kJ]

1125kJ=[(3009.2927T2(1547.3948kJ))10276.5584kJ3375.2687kJ]1125kJ=3009.2927T2(1547.3948kJ)13651.8271kJ1125kJ+13651.8271kJ=3009.2927T2(1547.3948kJ)14776.8271kJ1547.3948kJ=3009.2927T2

9.5495=3009.2927T2T2=3009.29279.5495=315.1261K315K

Thus, the final temperature in the balloon is 315K.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 5-ft3 rigid tank initially contains refrigerant-134a at 60 psia and 100 percent quality. The tank is connected by a valve to a supply line that carries refrigerant-134a at 140 psia and 80F. The valve is now opened, allowing the refrigerant to enter the tank, and is closed when it is observed that the tank contains only saturated liquid at 100 psia. Determine (a) the mass of the refrigerant that entered the tank, (b) the amount of heat transfer with the surroundings at 708F, and (c) the entropy generated during this process.
A balloon initially contains 65 m3 of helium gas at atmospheric conditions of 100kPa and 22°C. The balloon is connected by a valve to a large reservoir that supplies helium gas at 150 kPa and 25°C. Now the valve is opened, and helium is allowed to enter the balloon until pressure equilibrium with the helium at the supply line is reached. The material of the balloon is such that its volume increases linearly with pressure. If no heat transfer takes place during this process, determine the final temperature in the balloon?
A 0.05-m3 rigid tank initially contains refrigerant134a at 0.8 MPa and 100 percent quality. The tank is connected by a valve to a supply line that carries refrigerant-134a at 1.2 MPa and 40°C. Now the valve is opened, and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains saturated liquid at 1.2 MPa. Determine the mass of the refrigerant that has entered the tank

Chapter 5 Solutions

Thermodynamics: An Engineering Approach

Ch. 5.5 - A 2-m3 rigid tank initially contains air whose...Ch. 5.5 - Air enters a nozzle steadily at 2.21 kg/m3 and 40...Ch. 5.5 - A spherical hot-air balloon is initially filled...Ch. 5.5 - Water enters the constant 130-mm inside-diameter...Ch. 5.5 - A desktop computer is to be cooled by a fan whose...Ch. 5.5 - A hair dryer is basically a duct of constant...Ch. 5.5 - Refrigerant-134a enters a 28-cm-diameter pipe...Ch. 5.5 - What are the different mechanisms for transferring...Ch. 5.5 - How do the energies of a flowing fluid and a fluid...Ch. 5.5 - An air compressor compresses 6 L of air at 120 kPa...Ch. 5.5 - A house is maintained at 1 atm and 24C, and warm...Ch. 5.5 - Refrigerant-134a enters the compressor of a...Ch. 5.5 - Steam is leaving a pressure cooker whose operating...Ch. 5.5 - How is a steady-flow system characterized?Ch. 5.5 - Can a steady-flow system involve boundary work?Ch. 5.5 - A diffuser is an adiabatic device that decreases...Ch. 5.5 - The kinetic energy of a fluid increases as it is...Ch. 5.5 - The stators in a gas turbine are designed to...Ch. 5.5 - The diffuser in a jet engine is designed to...Ch. 5.5 - Air enters a nozzle steadily at 50 psia, 140F, and...Ch. 5.5 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 5.5 - Carbon dioxide enters an adiabatic nozzle steadily...Ch. 5.5 - Steam enters a nozzle at 400C and 800 kPa with a...Ch. 5.5 - Air at 80 kPa and 127C enters an adiabatic...Ch. 5.5 - Air at 13 psia and 65F enters an adiabatic...Ch. 5.5 - Refrigerant-134a at 700 kPa and 120C enters an...Ch. 5.5 - Refrigerant-134a enters a diffuser steadily as...Ch. 5.5 - Air at 80 kPa, 27C, and 220 m/s enters a diffuser...Ch. 5.5 - Air enters an adiabatic nozzle steadily at 300...Ch. 5.5 - Consider an adiabatic turbine operating steadily....Ch. 5.5 - Prob. 42PCh. 5.5 - Somebody proposes the following system to cool a...Ch. 5.5 - Air is expanded from 1000 kPa and 600C at the...Ch. 5.5 - Prob. 45PCh. 5.5 - Refrigerant-134a enters a compressor at 100 kPa...Ch. 5.5 - Refrigerant-134a enters a compressor at 180 kPa as...Ch. 5.5 - Steam flows steadily through an adiabatic turbine....Ch. 5.5 - Steam flows steadily through a turbine at a rate...Ch. 5.5 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 5.5 - An adiabatic air compressor compresses 10 L/s of...Ch. 5.5 - Carbon dioxide enters an adiabatic compressor at...Ch. 5.5 - Steam flows steadily into a turbine with a mass...Ch. 5.5 - Air is compressed by an adiabatic compressor from...Ch. 5.5 - Air enters the compressor of a gas-turbine plant...Ch. 5.5 - A portion of the steam passing through a steam...Ch. 5.5 - Why are throttling devices commonly used in...Ch. 5.5 - Would you expect the temperature of air to drop as...Ch. 5.5 - During a throttling process, the temperature of a...Ch. 5.5 - Someone claims, based on temperature measurements,...Ch. 5.5 - Refrigerant-134a is throttled from the saturated...Ch. 5.5 - A saturated liquidvapor mixture of water, called...Ch. 5.5 - Prob. 64PCh. 5.5 - A well-insulated valve is used to throttle steam...Ch. 5.5 - Refrigerant-134a enters the expansion valve of a...Ch. 5.5 - Prob. 68PCh. 5.5 - Prob. 69PCh. 5.5 - Consider a steady-flow heat exchanger involving...Ch. 5.5 - Prob. 71PCh. 5.5 - Refrigerant-134a at 700 kPa, 70C, and 8 kg/min is...Ch. 5.5 - Hot and cold streams of a fluid are mixed in a...Ch. 5.5 - A hot-water stream at 80C enters a mixing chamber...Ch. 5.5 - Water at 80F and 20 psia is heated in a chamber by...Ch. 5.5 - An adiabatic open feedwater heater in an electric...Ch. 5.5 - Cold water (cp = 4.18 kJ/kgC) leading to a shower...Ch. 5.5 - Steam is to be condensed on the shell side of a...Ch. 5.5 - Air (cp = 1.005 kJ/kgC) is to be preheated by hot...Ch. 5.5 - An open feedwater heater heats the feedwater by...Ch. 5.5 - Refrigerant-134a at 1 MPa and 90C is to be cooled...Ch. 5.5 - The evaporator of a refrigeration cycle is...Ch. 5.5 - An air-conditioning system involves the mixing of...Ch. 5.5 - A well-insulated shell-and-tube heat exchanger is...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Steam is to be condensed in the condenser of a...Ch. 5.5 - Two streams of water are mixed in an insulated...Ch. 5.5 - Two mass streams of the same ideal gas are mixed...Ch. 5.5 - Water is heated in an insulated, constant-diameter...Ch. 5.5 - A 110-volt electrical heater is used to warm 0.3...Ch. 5.5 - The ducts of an air heating system pass through an...Ch. 5.5 - The fan on a personal computer draws 0.3 ft3/s of...Ch. 5.5 - Saturated liquid water is heated in a steady-flow...Ch. 5.5 - Water enters the tubes of a cold plate at 70F with...Ch. 5.5 - Prob. 96PCh. 5.5 - A computer cooled by a fan contains eight PCBs,...Ch. 5.5 - A desktop computer is to be cooled by a fan. The...Ch. 5.5 - Prob. 99PCh. 5.5 - A 4-m 5-m 6-m room is to be heated by an...Ch. 5.5 - A house has an electric heating system that...Ch. 5.5 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 5.5 - Prob. 103PCh. 5.5 - Prob. 104PCh. 5.5 - Argon steadily flows into a constant-pressure...Ch. 5.5 - Steam enters a long, horizontal pipe with an inlet...Ch. 5.5 - Refrigerant-134a enters the condenser of a...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - A hair dryer is basically a duct in which a few...Ch. 5.5 - Air enters the duct of an air-conditioning system...Ch. 5.5 - An insulated rigid tank is initially evacuated. A...Ch. 5.5 - A rigid, insulated tank that is initially...Ch. 5.5 - Prob. 115PCh. 5.5 - A 2-m3 rigid tank initially contains air at 100...Ch. 5.5 - A 0.2-m3 rigid tank equipped with a pressure...Ch. 5.5 - Prob. 118PCh. 5.5 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 5.5 - A 4-L pressure cooker has an operating pressure of...Ch. 5.5 - An air-conditioning system is to be filled from a...Ch. 5.5 - Oxygen is supplied to a medical facility from ten...Ch. 5.5 - A 0.05-m3 rigid tank initially contains...Ch. 5.5 - A 0.12-m3 rigid tank contains saturated...Ch. 5.5 - A 0.3-m3 rigid tank is filled with saturated...Ch. 5.5 - The air-release flap on a hot-air balloon is used...Ch. 5.5 - Prob. 127PCh. 5.5 - An insulated 0.15-m3 tank contains helium at 3 MPa...Ch. 5.5 - A vertical pistoncylinder device initially...Ch. 5.5 - A vertical piston-cylinder device initially...Ch. 5.5 - A pistoncylinder device initially contains 0.6 kg...Ch. 5.5 - The weighted piston of the device shown in Fig....Ch. 5.5 - Prob. 136RPCh. 5.5 - Prob. 137RPCh. 5.5 - Prob. 138RPCh. 5.5 - Air at 4.18 kg/m3 enters a nozzle that has an...Ch. 5.5 - Prob. 140RPCh. 5.5 - An air compressor compresses 15 L/s of air at 120...Ch. 5.5 - A steam turbine operates with 1.6 MPa and 350C...Ch. 5.5 - Refrigerant-134a enters an adiabatic compressor at...Ch. 5.5 - Prob. 144RPCh. 5.5 - Prob. 145RPCh. 5.5 - Prob. 146RPCh. 5.5 - Prob. 147RPCh. 5.5 - Steam enters a nozzle with a low velocity at 150C...Ch. 5.5 - Prob. 149RPCh. 5.5 - Prob. 150RPCh. 5.5 - Prob. 151RPCh. 5.5 - Prob. 152RPCh. 5.5 - Prob. 153RPCh. 5.5 - Cold water enters a steam generator at 20C and...Ch. 5.5 - An ideal gas expands in an adiabatic turbine from...Ch. 5.5 - Determine the power input for a compressor that...Ch. 5.5 - Prob. 157RPCh. 5.5 - Prob. 158RPCh. 5.5 - Prob. 159RPCh. 5.5 - Prob. 160RPCh. 5.5 - In a dairy plant, milk at 4C is pasteurized...Ch. 5.5 - Prob. 162RPCh. 5.5 - Prob. 163RPCh. 5.5 - Prob. 164RPCh. 5.5 - Prob. 165RPCh. 5.5 - Prob. 166RPCh. 5.5 - The average atmospheric pressure in Spokane,...Ch. 5.5 - The ventilating fan of the bathroom of a building...Ch. 5.5 - Prob. 169RPCh. 5.5 - Determine the rate of sensible heat loss from a...Ch. 5.5 - Prob. 171RPCh. 5.5 - An air-conditioning system requires airflow at the...Ch. 5.5 - A building with an internal volume of 400 m3 is to...Ch. 5.5 - The maximum flow rate of standard shower heads is...Ch. 5.5 - Prob. 176RPCh. 5.5 - Prob. 177RPCh. 5.5 - Steam enters a turbine steadily at 7 MPa and 600C...Ch. 5.5 - Reconsider Prob. 5178. Using appropriate software,...Ch. 5.5 - Prob. 180RPCh. 5.5 - A liquid R-134a bottle has an internal volume of...Ch. 5.5 - A pistoncylinder device initially contains 2 kg of...Ch. 5.5 - A pistoncylinder device initially contains 1.2 kg...Ch. 5.5 - A pressure cooker is a pot that cooks food much...Ch. 5.5 - A tank with an internal volume of 1 m3 contains...Ch. 5.5 - In a single-flash geothermal power plant,...Ch. 5.5 - An adiabatic air compressor is to be powered by a...Ch. 5.5 - The turbocharger of an internal combustion engine...Ch. 5.5 - Prob. 189RPCh. 5.5 - Consider an evacuated rigid bottle of volume V...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - A heat exchanger is used to heat cold water at 15C...Ch. 5.5 - An adiabatic heat exchanger is used to heat cold...Ch. 5.5 - In a shower, cold water at 10C flowing at a rate...Ch. 5.5 - Prob. 195FEPCh. 5.5 - Prob. 196FEPCh. 5.5 - Hot combustion gases (assumed to have the...Ch. 5.5 - Steam expands in a turbine from 4 MPa and 500C to...Ch. 5.5 - Steam is compressed by an adiabatic compressor...Ch. 5.5 - Refrigerant-134a is compressed by a compressor...Ch. 5.5 - Refrigerant-134a at 1.4 MPa and 70C is throttled...Ch. 5.5 - Prob. 202FEPCh. 5.5 - Prob. 203FEPCh. 5.5 - Air at 27C and 5 atm is throttled by a valve to 1...Ch. 5.5 - Steam at 1 MPa and 300C is throttled adiabatically...Ch. 5.5 - Air is to be heated steadily by an 8-kW electric...Ch. 5.5 - Saturated water vapor at 40C is to be condensed as...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License