BuyFindarrow_forward

Calculus: An Applied Approach (Min...

10th Edition
Ron Larson
ISBN: 9781305860919

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus: An Applied Approach (Min...

10th Edition
Ron Larson
ISBN: 9781305860919
Textbook Problem
1 views

Finding the Area Bounded by Two Graphs In Exercises 15-30, sketch the region bounded by the graphs of the functions and find the area of the region. See Examples 1, 2, 3, and 4.

y = x 2 2 x + 1 , y = x 2 10 x + 25 , y = 0

To determine

To graph: The region bounded by the graphs of y=x22x+1, y=x210x+25 and y=0, and also compute the area of the region.

Explanation

Given Information:

The region bounded by the graphs of y=x22x+1, y=x210x+25 and y=0.

Graph:

Consider the following equations that give the required region,

y=x22x+1, y=x210x+25 and y=0

It is a quadratic function. The term x2 is positive, so its graph will be a parabola with opening upwards. Compute its x-intercepts as follows:

x22x+1=0(x1)2=0x1=0x=1

The x-intercept is x=1.

Compute its y-intercepts as follows:

y=022×0+1y=1

The y-intercept is y=1.

Consider the second function y=x210x+25

It is a quadratic function. The term x2 is positive, so its graph will be a parabola with opening upwards. Compute its x-intercepts as follows:

x210x+25=0(x5)2=0x5=0x=5

The x-intercept is x=5.

Compute its y-intercepts as follows:

y=0210×0+25y=25

The y-intercept is y=25.

Compute the intersection point of the graphs of y=x22x+1 and y=x210x+25 as follows:

x22x+1=x210x+2510x2x=2518x=24x=3

Substitute x=3 in the equation y=x22x+1 and compute the intersection point,

y=322×3+1=96+1=4

So two graphs intersect at point (3,4).

Compute the x-intercept point of the graph of y=x22x+1 as follows:

x22x+1=0(x1)2=0x1=0x=1

So, x-intercept of the graph of y=x22x+1 is (1,0).

Compute the x-intercept point of the graph of y=x210x+25 as follows:

x210x+25=0(x5)2=0x5=0x=5

So, x-intercept of the graph of y=x210x+25 is (5,0).

Intersection point is calculated by,

x210x+25=x22x+1x=3

Sketch the graph of the region as follows:

Formula used:

Area of a region bounded by two graphs is calculated using the following formula,

If f and g are continuous on [a,b] and g(x)f(x) for all x in [a,b], then the area of the region bounded by the graphs of f, g, x=a and x=b is given by

A=ab[f(x)g(x)]dx

Power for integrals is,

xndx=xn+1n+1+C

Calculate:

From the above, the required area consists of two regions, left region and right region

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-5.1 P-3SWUSect-5.1 P-4SWUSect-5.1 P-5SWUSect-5.1 P-6SWUSect-5.1 P-7SWUSect-5.1 P-8SWUSect-5.1 P-9SWUSect-5.1 P-10SWUSect-5.1 P-1ESect-5.1 P-2ESect-5.1 P-3ESect-5.1 P-4ESect-5.1 P-5ESect-5.1 P-6ESect-5.1 P-7ESect-5.1 P-8ESect-5.1 P-9ESect-5.1 P-10ESect-5.1 P-11ESect-5.1 P-12ESect-5.1 P-13ESect-5.1 P-14ESect-5.1 P-15ESect-5.1 P-16ESect-5.1 P-17ESect-5.1 P-18ESect-5.1 P-19ESect-5.1 P-20ESect-5.1 P-21ESect-5.1 P-22ESect-5.1 P-23ESect-5.1 P-24ESect-5.1 P-25ESect-5.1 P-26ESect-5.1 P-27ESect-5.1 P-28ESect-5.1 P-29ESect-5.1 P-30ESect-5.1 P-31ESect-5.1 P-32ESect-5.1 P-33ESect-5.1 P-34ESect-5.1 P-35ESect-5.1 P-36ESect-5.1 P-37ESect-5.1 P-38ESect-5.1 P-39ESect-5.1 P-40ESect-5.1 P-41ESect-5.1 P-42ESect-5.1 P-43ESect-5.1 P-44ESect-5.1 P-45ESect-5.1 P-46ESect-5.1 P-47ESect-5.1 P-48ESect-5.1 P-49ESect-5.1 P-50ESect-5.1 P-51ESect-5.1 P-52ESect-5.1 P-53ESect-5.1 P-54ESect-5.1 P-55ESect-5.1 P-56ESect-5.1 P-57ESect-5.1 P-58ESect-5.1 P-59ESect-5.1 P-60ESect-5.1 P-61ESect-5.1 P-62ESect-5.1 P-63ESect-5.1 P-64ESect-5.1 P-65ESect-5.1 P-66ESect-5.1 P-67ESect-5.1 P-68ESect-5.1 P-69ESect-5.1 P-70ESect-5.1 P-71ESect-5.1 P-72ESect-5.1 P-73ESect-5.1 P-74ESect-5.1 P-75ESect-5.2 P-1CPSect-5.2 P-2CPSect-5.2 P-3CPSect-5.2 P-4CPSect-5.2 P-5CPSect-5.2 P-6CPSect-5.2 P-7CPSect-5.2 P-8CPSect-5.2 P-1SWUSect-5.2 P-2SWUSect-5.2 P-3SWUSect-5.2 P-4SWUSect-5.2 P-5SWUSect-5.2 P-6SWUSect-5.2 P-7SWUSect-5.2 P-8SWUSect-5.2 P-9SWUSect-5.2 P-1ESect-5.2 P-2ESect-5.2 P-3ESect-5.2 P-4ESect-5.2 P-5ESect-5.2 P-6ESect-5.2 P-7ESect-5.2 P-8ESect-5.2 P-9ESect-5.2 P-10ESect-5.2 P-11ESect-5.2 P-12ESect-5.2 P-13ESect-5.2 P-14ESect-5.2 P-15ESect-5.2 P-16ESect-5.2 P-17ESect-5.2 P-18ESect-5.2 P-19ESect-5.2 P-20ESect-5.2 P-21ESect-5.2 P-22ESect-5.2 P-23ESect-5.2 P-24ESect-5.2 P-25ESect-5.2 P-26ESect-5.2 P-27ESect-5.2 P-28ESect-5.2 P-29ESect-5.2 P-30ESect-5.2 P-31ESect-5.2 P-32ESect-5.2 P-33ESect-5.2 P-34ESect-5.2 P-35ESect-5.2 P-36ESect-5.2 P-37ESect-5.2 P-38ESect-5.2 P-39ESect-5.2 P-40ESect-5.2 P-41ESect-5.2 P-42ESect-5.2 P-43ESect-5.2 P-44ESect-5.2 P-45ESect-5.2 P-46ESect-5.2 P-47ESect-5.2 P-48ESect-5.2 P-49ESect-5.2 P-50ESect-5.2 P-51ESect-5.2 P-52ESect-5.2 P-53ESect-5.2 P-54ESect-5.2 P-55ESect-5.2 P-56ESect-5.2 P-57ESect-5.2 P-58ESect-5.2 P-59ESect-5.2 P-60ESect-5.2 P-61ESect-5.2 P-62ESect-5.3 P-1CPSect-5.3 P-2CPSect-5.3 P-3CPSect-5.3 P-4CPSect-5.3 P-5CPSect-5.3 P-6CPSect-5.3 P-7CPSect-5.3 P-1SWUSect-5.3 P-2SWUSect-5.3 P-3SWUSect-5.3 P-4SWUSect-5.3 P-5SWUSect-5.3 P-6SWUSect-5.3 P-7SWUSect-5.3 P-8SWUSect-5.3 P-1ESect-5.3 P-2ESect-5.3 P-3ESect-5.3 P-4ESect-5.3 P-5ESect-5.3 P-6ESect-5.3 P-7ESect-5.3 P-8ESect-5.3 P-9ESect-5.3 P-10ESect-5.3 P-11ESect-5.3 P-12ESect-5.3 P-13ESect-5.3 P-14ESect-5.3 P-15ESect-5.3 P-16ESect-5.3 P-17ESect-5.3 P-18ESect-5.3 P-19ESect-5.3 P-20ESect-5.3 P-21ESect-5.3 P-22ESect-5.3 P-23ESect-5.3 P-24ESect-5.3 P-25ESect-5.3 P-26ESect-5.3 P-27ESect-5.3 P-28ESect-5.3 P-29ESect-5.3 P-30ESect-5.3 P-31ESect-5.3 P-32ESect-5.3 P-33ESect-5.3 P-34ESect-5.3 P-35ESect-5.3 P-36ESect-5.3 P-37ESect-5.3 P-38ESect-5.3 P-39ESect-5.3 P-40ESect-5.3 P-41ESect-5.3 P-42ESect-5.3 P-43ESect-5.3 P-44ESect-5.3 P-45ESect-5.3 P-46ESect-5.3 P-47ESect-5.3 P-48ESect-5.3 P-49ESect-5.3 P-50ESect-5.3 P-51ESect-5.3 P-52ESect-5.3 P-53ESect-5.3 P-54ESect-5.3 P-55ESect-5.3 P-56ESect-5.3 P-57ESect-5.3 P-58ESect-5.3 P-1QYSect-5.3 P-2QYSect-5.3 P-3QYSect-5.3 P-4QYSect-5.3 P-5QYSect-5.3 P-6QYSect-5.3 P-7QYSect-5.3 P-8QYSect-5.3 P-9QYSect-5.3 P-10QYSect-5.3 P-11QYSect-5.3 P-12QYSect-5.3 P-13QYSect-5.3 P-14QYSect-5.3 P-15QYSect-5.3 P-16QYSect-5.3 P-17QYSect-5.3 P-18QYSect-5.3 P-19QYSect-5.3 P-20QYSect-5.3 P-21QYSect-5.4 P-1CPSect-5.4 P-2CPSect-5.4 P-3CPSect-5.4 P-4CPSect-5.4 P-5CPSect-5.4 P-6CPSect-5.4 P-7CPSect-5.4 P-8CPSect-5.4 P-9CPSect-5.4 P-1SWUSect-5.4 P-2SWUSect-5.4 P-3SWUSect-5.4 P-4SWUSect-5.4 P-5SWUSect-5.4 P-6SWUSect-5.4 P-7SWUSect-5.4 P-1ESect-5.4 P-2ESect-5.4 P-3ESect-5.4 P-4ESect-5.4 P-5ESect-5.4 P-6ESect-5.4 P-7ESect-5.4 P-8ESect-5.4 P-9ESect-5.4 P-10ESect-5.4 P-11ESect-5.4 P-12ESect-5.4 P-13ESect-5.4 P-14ESect-5.4 P-15ESect-5.4 P-16ESect-5.4 P-17ESect-5.4 P-18ESect-5.4 P-19ESect-5.4 P-20ESect-5.4 P-21ESect-5.4 P-22ESect-5.4 P-23ESect-5.4 P-24ESect-5.4 P-25ESect-5.4 P-26ESect-5.4 P-27ESect-5.4 P-28ESect-5.4 P-29ESect-5.4 P-30ESect-5.4 P-31ESect-5.4 P-32ESect-5.4 P-33ESect-5.4 P-34ESect-5.4 P-35ESect-5.4 P-36ESect-5.4 P-37ESect-5.4 P-38ESect-5.4 P-39ESect-5.4 P-40ESect-5.4 P-41ESect-5.4 P-42ESect-5.4 P-43ESect-5.4 P-44ESect-5.4 P-45ESect-5.4 P-46ESect-5.4 P-47ESect-5.4 P-48ESect-5.4 P-49ESect-5.4 P-50ESect-5.4 P-51ESect-5.4 P-52ESect-5.4 P-53ESect-5.4 P-54ESect-5.4 P-55ESect-5.4 P-56ESect-5.4 P-57ESect-5.4 P-58ESect-5.4 P-59ESect-5.4 P-60ESect-5.4 P-61ESect-5.4 P-62ESect-5.4 P-63ESect-5.4 P-64ESect-5.4 P-65ESect-5.4 P-66ESect-5.4 P-67ESect-5.4 P-68ESect-5.4 P-69ESect-5.4 P-70ESect-5.4 P-71ESect-5.4 P-72ESect-5.4 P-73ESect-5.4 P-74ESect-5.4 P-75ESect-5.4 P-76ESect-5.4 P-77ESect-5.4 P-78ESect-5.4 P-79ESect-5.5 P-1CPSect-5.5 P-2CPSect-5.5 P-3CPSect-5.5 P-4CPSect-5.5 P-5CPSect-5.5 P-6CPSect-5.5 P-1SWUSect-5.5 P-2SWUSect-5.5 P-3SWUSect-5.5 P-4SWUSect-5.5 P-5SWUSect-5.5 P-6SWUSect-5.5 P-7SWUSect-5.5 P-8SWUSect-5.5 P-1ESect-5.5 P-2ESect-5.5 P-3ESect-5.5 P-4ESect-5.5 P-5ESect-5.5 P-6ESect-5.5 P-7ESect-5.5 P-8ESect-5.5 P-9ESect-5.5 P-10ESect-5.5 P-11ESect-5.5 P-12ESect-5.5 P-13ESect-5.5 P-14ESect-5.5 P-15ESect-5.5 P-16ESect-5.5 P-17ESect-5.5 P-18ESect-5.5 P-19ESect-5.5 P-20ESect-5.5 P-21ESect-5.5 P-22ESect-5.5 P-23ESect-5.5 P-24ESect-5.5 P-25ESect-5.5 P-26ESect-5.5 P-27ESect-5.5 P-28ESect-5.5 P-29ESect-5.5 P-30ESect-5.5 P-31ESect-5.5 P-32ESect-5.5 P-33ESect-5.5 P-34ESect-5.5 P-35ESect-5.5 P-36ESect-5.5 P-37ESect-5.5 P-38ESect-5.5 P-39ESect-5.5 P-40ESect-5.5 P-41ESect-5.5 P-42ESect-5.5 P-43ESect-5.5 P-44ESect-5.5 P-45ESect-5.5 P-46ESect-5.5 P-47ESect-5.5 P-48ESect-5.5 P-49ESect-5.5 P-50ESect-5.5 P-51ESect-5.5 P-52ESect-5.5 P-53ESect-5.5 P-54ESect-5.5 P-55ESect-5.5 P-56ESect-5.5 P-57ESect-5.5 P-58ESect-5.6 P-1CPSect-5.6 P-2CPSect-5.6 P-3CPSect-5.6 P-1SWUSect-5.6 P-2SWUSect-5.6 P-3SWUSect-5.6 P-4SWUSect-5.6 P-5SWUSect-5.6 P-6SWUSect-5.6 P-7SWUSect-5.6 P-8SWUSect-5.6 P-9SWUSect-5.6 P-10SWUSect-5.6 P-1ESect-5.6 P-2ESect-5.6 P-3ESect-5.6 P-4ESect-5.6 P-5ESect-5.6 P-6ESect-5.6 P-7ESect-5.6 P-8ESect-5.6 P-9ESect-5.6 P-10ESect-5.6 P-11ESect-5.6 P-12ESect-5.6 P-13ESect-5.6 P-14ESect-5.6 P-15ESect-5.6 P-16ESect-5.6 P-17ESect-5.6 P-18ESect-5.6 P-19ESect-5.6 P-20ESect-5.6 P-29ESect-5.6 P-30ESect-5.6 P-31ESect-5.6 P-33ECh-5 P-1RECh-5 P-2RECh-5 P-3RECh-5 P-4RECh-5 P-5RECh-5 P-6RECh-5 P-7RECh-5 P-8RECh-5 P-9RECh-5 P-10RECh-5 P-11RECh-5 P-12RECh-5 P-13RECh-5 P-14RECh-5 P-15RECh-5 P-16RECh-5 P-17RECh-5 P-18RECh-5 P-19RECh-5 P-20RECh-5 P-21RECh-5 P-22RECh-5 P-23RECh-5 P-24RECh-5 P-25RECh-5 P-26RECh-5 P-27RECh-5 P-28RECh-5 P-29RECh-5 P-30RECh-5 P-31RECh-5 P-32RECh-5 P-33RECh-5 P-34RECh-5 P-35RECh-5 P-36RECh-5 P-37RECh-5 P-38RECh-5 P-39RECh-5 P-40RECh-5 P-41RECh-5 P-42RECh-5 P-43RECh-5 P-44RECh-5 P-45RECh-5 P-46RECh-5 P-47RECh-5 P-48RECh-5 P-49RECh-5 P-50RECh-5 P-51RECh-5 P-52RECh-5 P-53RECh-5 P-54RECh-5 P-55RECh-5 P-56RECh-5 P-57RECh-5 P-58RECh-5 P-59RECh-5 P-60RECh-5 P-61RECh-5 P-62RECh-5 P-63RECh-5 P-64RECh-5 P-65RECh-5 P-66RECh-5 P-67RECh-5 P-68RECh-5 P-69RECh-5 P-70RECh-5 P-71RECh-5 P-72RECh-5 P-73RECh-5 P-74RECh-5 P-75RECh-5 P-76RECh-5 P-77RECh-5 P-78RECh-5 P-79RECh-5 P-80RECh-5 P-81RECh-5 P-82RECh-5 P-83RECh-5 P-84RECh-5 P-85RECh-5 P-86RECh-5 P-87RECh-5 P-88RECh-5 P-89RECh-5 P-90RECh-5 P-91RECh-5 P-92RECh-5 P-93RECh-5 P-94RECh-5 P-95RECh-5 P-96RECh-5 P-97RECh-5 P-98RECh-5 P-99RECh-5 P-100RECh-5 P-101RECh-5 P-102RECh-5 P-103RECh-5 P-104RECh-5 P-105RECh-5 P-106RECh-5 P-107RECh-5 P-108RECh-5 P-109RECh-5 P-110RECh-5 P-111RECh-5 P-112RECh-5 P-113RECh-5 P-114RECh-5 P-115RECh-5 P-1TYSCh-5 P-2TYSCh-5 P-3TYSCh-5 P-4TYSCh-5 P-5TYSCh-5 P-6TYSCh-5 P-7TYSCh-5 P-8TYSCh-5 P-9TYSCh-5 P-10TYSCh-5 P-11TYSCh-5 P-12TYSCh-5 P-13TYSCh-5 P-14TYSCh-5 P-15TYSCh-5 P-16TYSCh-5 P-17TYSCh-5 P-18TYSCh-5 P-19TYSCh-5 P-20TYSCh-5 P-21TYSCh-5 P-22TYS

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 4756, solve the given equation for the indicated variable. 5x+1=1125

Finite Mathematics and Applied Calculus (MindTap Course List)

Prove the identity. 44. sin( x) = sin x

Single Variable Calculus: Early Transcendentals, Volume I

Profit from Sale of Smartphones Apollo manufactures smartphones at a variable cost of V(x) = 0.000003x3 0.03x2...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate the integral. 01(1+r)3dr

Calculus (MindTap Course List)

In problems 45-62, perform the indicated operations and simplify. 52.

Mathematical Applications for the Management, Life, and Social Sciences

Find the derivative of the function. h(t) = (t + 1)2/3 (2t2 1)3

Single Variable Calculus: Early Transcendentals

Read each scale:

Elementary Technical Mathematics

∫x−4dx = −4x−5 + C

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or False: is monotonic.

Study Guide for Stewart's Multivariable Calculus, 8th