
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 1PEB
An inflated rubber balloon is rubbed with a wool cloth until an excess of a billion electrons is on the balloon. What is the magnitude of the charge on the balloon?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
I need help with part C using info provided above part a.
A small ball of mass M is attached to the end of a uniform rod of equal mass M and length L that is pivoted at the top (see figure below).
P
Pivot
M
i
(a) Determine the tension in the rod at the pivot. (Use the following as necessary: M, g, L, and y.)
F
pivot =
2.M.g
(b) Determine the tension in the rod at the point P when the system is stationary. (Use the following as necessary: M, g, L, and y.)
Fp
=
M.g.
·(1+ ž)
(c) Calculate the period of oscillation for small displacements from equilibrium. (Use the following as necessary: M, g, L, and y.)
T= 4.
Π
3
L
2.
g
(d) Determine this period (in s) for L = 2.08 m.
1.93
Your response differs from the correct answer by more than 10%. Double check your calculations. s
(e) What If? What is the percentage difference between the period of this system compared to the period of a simple pendulum in which a ball of mass M is pivoted at the end of a massless rod of length L?
simple x 100% 33.4
Tsystem T
simple
× %
An electron with kinetic energy K is traveling along the
positive x-axis, which is along the axis of a cathode-ray tube,
as shown in the figure. There is an electric field
E = 15.0 × 104 N/C pointed in the positive y-direction
between the deflection plates, which are 0.0600 m long and
are separated by 0.0200 m.
Determine the minimum kinetic energy Kmin the electron can
have and still avoid colliding with one of the plates.
Kmin
=
12
Ē
L
d
x
J
Chapter 6 Solutions
Physical Science
Ch. 6 - 1. Electrostatic charge results from
a. transfer...Ch. 6 - 2. The unit of electric charge is the
a. volt.
b....Ch. 6 - 3. An electric field describes the condition of...Ch. 6 - 4. A material that has electrons that are free to...Ch. 6 - 5. An example of an electrical insulator is
a....Ch. 6 - 6. The electrical potential difference between two...Ch. 6 - 7. The rate at which an electric current flows...Ch. 6 - 8. The law that predicts the behavior of...Ch. 6 - 9. What type of electric current is produced by...Ch. 6 - 10. The electrical resistance of a conductor is...
Ch. 6 - 11. According to Ohm’s law, what must be greater...Ch. 6 - 12. A kilowatt-hour is a unit of
a. power.
b....Ch. 6 - 13. If you multiply volts by amps, the answer will...Ch. 6 - 14. Units of joules per second are a measure...Ch. 6 - 15. A lodestone is a natural magnet that...Ch. 6 - The north pole of a suspended or floating bar...Ch. 6 - 17. A current-carrying wire always has
a. a...Ch. 6 - 18. Magnetism is produced by
a. an excess of north...Ch. 6 - 19. Earth's magnetic field
a. has undergone many...Ch. 6 - 20. The strength of a magnetic field around a...Ch. 6 - 21. Reverse the direction of a current in a wire,...Ch. 6 - 22. The operation of which of the following...Ch. 6 - Prob. 23ACCh. 6 - When a loop of wire cuts across magnetic field...Ch. 6 - 25. A step-up transformer steps up the
a....Ch. 6 - Prob. 26ACCh. 6 - 27. Electric power companies step up the voltage...Ch. 6 - 28. A solar cell
a. produces electricity...Ch. 6 - 29. Which of the following is most likely to...Ch. 6 - 30. Which of the following units are measures of...Ch. 6 - 31. You are using which description of a current...Ch. 6 - 32. In an electric current, the electrons are...Ch. 6 - 33. In which of the following currents is there no...Ch. 6 - Prob. 34ACCh. 6 - 35. A permanent magnet has magnetic properties...Ch. 6 - 36. A current-carrying wire has a magnetic field...Ch. 6 - 37. When an object acquires a negative charge, it...Ch. 6 - 38. A positive and a negative charge are initially...Ch. 6 - 39. To be operational, a complete electric circuit...Ch. 6 - 40. Which variable is inversely proportional to...Ch. 6 - 41. Which of the following is not considered to...Ch. 6 - 42. A piece of iron can be magnetized or...Ch. 6 - 43. Earth’s magnetic field is believed to...Ch. 6 - 44. Electromagnetic induction takes place...Ch. 6 - 45. The current in the secondary coil of a...Ch. 6 - 46. An electromagnet uses.
a. a magnetic field to...Ch. 6 - 47. A transformer.
a. changes the voltage of a...Ch. 6 - 48. A parallel circuit has
a. wires that are lined...Ch. 6 - 49. In which type of circuit would you expect a...Ch. 6 - 50. In which type of circuit would you expect the...Ch. 6 - 1. Explain why a balloon that has been rubbed...Ch. 6 - 2. Explain what is happening when you walk across...Ch. 6 - 3. Why does a positively or negatively charged...Ch. 6 - 4. Explain how you that it is an electric field,...Ch. 6 - 5. Is a kWh a unit of power or a unit of work?...Ch. 6 - 6. What is the difference between ac and dc?
Ch. 6 - Prob. 7QFTCh. 6 - 8. How is an unmagnetized piece of iron different...Ch. 6 - 9. Explain why the electric utility company...Ch. 6 - 10. Describe how an electric generator is able to...Ch. 6 - Prob. 11QFTCh. 6 - 12. Explain what causes an electron to move toward...Ch. 6 - 1. Explain how the model of electricity as...Ch. 6 - 2. What are the significant similarities and...Ch. 6 - 3. Transformers usually have signs warning,...Ch. 6 - 4. Will a fuel cell be the automobile engine of...Ch. 6 - 5. Analyze the apparent contradiction in the...Ch. 6 - 6. What are the basic similarities and differences...Ch. 6 - 7. What are the advantages and disadvantages of...Ch. 6 - 1. An inflated rubber balloon is rubbed with a...Ch. 6 - 2. What is the force between two balloons with a...Ch. 6 - 3. How much energy is available from a 12 V...Ch. 6 - 4. A wire carries a current of 2.0 A. at what rate...Ch. 6 - Prob. 5PEBCh. 6 - 6. There is a current of 0.83 A through a...Ch. 6 - 7. What is the voltage across a 60.0 resistor with...Ch. 6 - 7. What is the voltage across a 60.0 resistor...Ch. 6 - 9. A lightbulb designed to operate in a 120.0 V...Ch. 6 - 10. What is the monthly energy cost of leaving a...Ch. 6 - 11. An electric motor draws a current of 11.5 A in...Ch. 6 - 12. A swimming pool requiring a 2.0 hp motor to...Ch. 6 - 13. Is it possible for two people to...Ch. 6 - 14. A step-up transformer has a primary coil with...Ch. 6 - 15. The step-down transformer in a local...Ch. 6 - 16. A step-down transformer connected to a 120 V...Ch. 6 - 17. What is the power of an 8.0-ohm bulb when...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small 2.85 g plastic ball that has a charge q = 1.75 C is suspended by a string that has a length L = 1.00 m in a uniform electric field, as shown in the figure. If the ball is in equilibrium when the string makes a 0 = 9.80° angle with the vertical, what is the electric field strength E? | L E = N/C | Ꮎ q Ēarrow_forwardA less than youthful 80.6 kg physics professor decides to run the 26.2 mile (42.195 km) Los Angeles Marathon. During his months of training, he realizes that one important component in running a successful marathon is carbo-loading, the consumption of a sufficient quantity of carbohydrates prior to the race that the body can store as glycogen to burn during the race. The typical energy requirement for runners is 1 kcal/km per kilogram of body weight, and each mole of oxygen intake allows for the release of 120 kcal of energy by oxidizing (burning) glycogen. (a) If the professor finishes the marathon in 5:15:00 h, what is the professor's oxygen intake rate, in liters per minute, during the race if he metabolizes all of the carbo-loaded glycogen during the race and the ambient temperature is 21.5°C? 2.02 × Read the problem statement again carefully. Is the air at standard temperature and pressure during the marathon? How would this affect the volume of 1 mol of oxygen? L/min (b) The…arrow_forwardYou are using a microscope to view a dust particle suspended in a drop of water on a microscope slide. As water molecules bombard the particle, it "jitters" about in a random motion (Brownian motion). The particle's average kinetic energy is the same as 3 that of a molecule in an ideal gas (K = The particle (assumed to be spherical) has a density of 350 kg/m³ in water at 23°C. 2 BT). (a) If the particle has a diameter d, determine an expression for its rms speed in terms of the diameter d. (Enter your answer as a multiple of d−3/2. Assume v is in m/s and d-3/2 is in m−3/2. Do not include units in your answer.) rms V. = rms rms Obtain an expression for v by equating the expression for the kinetic energy of the particle in terms of v obtain an expression for the mass of the particle in terms of its diameter. d-3/2 rms to the expression for the average kinetic energy of a molecule. Knowing the density of the particle and assuming it is a sphere, we can (b) Assuming the particle moves at a…arrow_forward
- You are watching a new bridge being built near your house. You notice during the construction that two concrete spans of the bridge of total length L; = 270 m are placed end to end so that no room is allowed for expansion (figure (a)). In the opening storyline for the thermodynamics chapter, we talked about buckling sidewalks. The same thing will happen with spans on bridges if allowance is not made for expansion (figure (b)). You want to warn the construction crew about this dangerous situation, so you calculate the height y to which the spans will rise when they buckle in response to a temperature increase of AT = 19.0°C. a b T T+AT y = Ider Enter a number. made by one span, with its thermally expanded length as the hypotenuse.arrow_forwardAn open cylinder of air has a radius of 38.0 cm and a height of 50.0 cm, as shown in figure (a). 50.0 cm Ah The air pressure is 1.00 atm and the temperature is 13.5°C. A 25.0 kg piston is then lowered onto the cylinder, forming an airtight seal, as shown in figure (b). The air inside is compressed until the piston reaches equilibrium (mechanical and thermal), and at this point the piston is a height h; from the bottom of the cylinder. Lastly, a 27.5 kg dog steps onto the piston, and the air in the cylinder again compresses, as show in figure (c). After reaching equilibrium, the air inside is again at 13.5°C, and the height of the piston decreases a distance Ah as shown. (a) What is the distance Ah (in mm) that the piston moves when the dog is on it? mm (b) To what temperature (in °C) should the gas be warmed to raise the piston and the dog back to h;? °Carrow_forwardTwo horizontal wires are joined end to end, each with a diameter of 2.000 mm. The two joined wires are connected to fixed points a total distance of 4.00000 m apart. When both wires are at a temperature of 43.0°C, each wire has an unstretched length of 2.00000 m, and the tension in each is negligible. The first wire is made of steel and extends from x = -2.00000 m to x = 0, and the second is made of brass and extends from x = 0 to x = 2.00000 m. The temperature of both wires is then lowered to 18.0°C, and the wires stay joined together as they cool. The steel wire is composed of an alloy that has an average coefficient of linear expansion of 1.10 x 10-5 (°C) -1 and a Young's modulus of 2.00 x 1011 N/m². The brass wire is composed of an alloy that has an average coefficient of linear expansion of 1.90 x 10-5 (°C)¹ and a Young's modulus of 9.10 x 10 10 N/m². (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your…arrow_forward
- ! Required information The radius of the Moon is 1.737 Mm and the distance between Earth and the Moon is 384.5 Mm. The intensity of the moonlight incident on her eye is 0.0220 W/m². What is the intensity incident on her retina if the diameter of her pupil is 6.54 mm and the diameter of her eye is 1.94 cm? W/m²arrow_forwardRequired information An object is placed 20.0 cm from a converging lens with focal length 15.0 cm (see the figure, not drawn to scale). A concave mirror with focal length 10.0 cm is located 76.5 cm to the right of the lens. Light goes through the lens, reflects from the mirror, and passes through the lens again, forming a final image. Converging lens Object Concave mirror 15.0 cm -20.0 cm- 10.0 cm d cm d = 76.5. What is the location of the final image? cm to the left of the lensarrow_forward! Required information A man requires reading glasses with +2.15-D refractive power to read a book held 40.0 cm away with a relaxed eye. Assume the glasses are 1.90 cm from his eyes. His uncorrected near point is 1.00 m. If one of the lenses is the one for distance vision, what should the refractive power of the other lens (for close-up vision) in his bifocals be to give him clear vision from 25.0 cm to infinity? 2.98 Darrow_forward
- ! Required information Assume that the magnifier is held close to the eye. Use the standard near point of 25.0 cm to find the angular magnification. An insect that is 4.10 mm long is placed 10.3 cm from a simple magnifier with a focal length of 13.0 cm. What is the angular magnification?arrow_forward2arrow_forward3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY