Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 39QAP

Write the orbital diagram for

(a) Li(b) P(c) F(d) Fe

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

To write the orbital diagram for each of the Li element.

Concept introduction:

The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel.To show the distribution of electrons in the various orbitals, orbital diagrams are used.The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.

Answer to Problem 39QAP

The orbital diagram for Li is:

1s         2s   

Explanation of Solution

When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Lithium atom denoted by Li is 3, therefore its ground state electronic configuration is:

1s22s1

According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins.No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins.The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Lithium, since the electrons are present in only s-sublevel,l=0.

This means 2l+1 = 2(0) +1= 1

Hence, one orbital is present for each sublevel. The orbital diagram for its electronic configuration is shown below:

1s         2s   

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

To write the orbital diagram for each of the P element.

Concept introduction:

The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.

Answer to Problem 39QAP

The orbital diagram for P is:

1s         2s            2p                        3s          3p                        

Explanation of Solution

When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Phosphorus atom denoted by P is 15, therefore its ground state electronic configuration is:

1s2 2s22p63s2 3p3

According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Phosphorus, since the electrons are present in both s and p-sublevel ,l=0 for s and l=1 for p-sublevels

This means 2l+1 = 2(0) +1= 1

Hence one orbital is present for each s-sublevel.

For a p-sublevel, the total number of orbitals is

2(1) +1

2+1

3

This means that three orbitals are present in each p-sublevel of Phosphorus atom.

The orbital diagram for its electronic configuration is shown below:

1s         2s            2p                        3s          3p                        

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

To write the orbital diagram for each of the F element.

Concept introduction:

The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration, one can get details of the number of electrons present in each sublevel. To show the distribution of electrons in the various orbitals, orbital diagrams are used. The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.

Answer to Problem 39QAP

The orbital diagram for F is:

1s         2s                   2p                                              

Explanation of Solution

When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Fluorine atom denoted by F is 9, therefore its ground state electronic configuration is:

1s22s22p5  

According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Fluorine, since the electrons are present in both s and p-sublevel, l=0 for s and l=1 for p-sublevels

This means 2l+1 = 2(0) +1= 1

Hence one orbital is present for each s-sublevel.

For a p-sublevel, the total number of orbitals is

2(1) +1

2+1

3

This means that three orbitals are present in p-sublevel of Fluorine atom.

The orbital diagram for its electronic configuration is shown below:

1s         2s                   2p                                              

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation:

To write the orbital diagram for each of the Fe element.

Concept introduction:

The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel.The filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place.

To show the distribution of electrons in the various orbitals, orbital diagrams are used.

Answer to Problem 39QAP

The orbital diagram for Fe is:

1s         2s            2p                        3s                 3p               3d                       4s                               

Explanation of Solution

When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. Atomic number of an element gives the total number of electrons present in an atom. Since the atomic number of Iron atom denoted by Fe is 26, therefore its ground state electronic configuration is:

1s22s22p6 3s2 3p6 3d6 4s2  

According to Hund’s Rule, when several orbitals having equal energy are available, then electrons are filled singly with parallel spins. No two electrons can have same spin in a given orbital. The most stable arrangement of electrons is the one in which two electrons present in two different orbitals have parallel spins. The total number of orbitals in a given sublevel are given by 2l+1, where l = 0,1,2,3 for s, p, d and f sublevels respectively. In case of Iron, since the electrons are present in s, p and d-sublevel, l=0 for s, l=1 for p and l=2 for d-sublevel.

This means 2l+1 = 2(0) +1= 1

Hence one orbital is present for each s-sublevel.

For a p-sublevel, the total number of orbitals is:

2(1) +1

2+1

3

This means that three orbitals are present in each p-sublevel of Fe atom.

For a d-sublevel, the total number of orbitals is:

2(2) + 1=5

Hence there are five orbitals present in d-sublevel of Fe atom.

The orbital diagram for its electronic configuration is shown below:

1s         2s            2p                        3s                 3p               3d                       4s                               

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

Chemistry: Principles and Reactions

Ch. 6 - According to the Bohr model, the radius of a...Ch. 6 - Calculate En for n=1,2,3, and 4 (R H=2.1801018J)....Ch. 6 - For the Pfund series, nlo=5. (a) Calculate the...Ch. 6 - In the Brackett series, nlo=4. (a) Calculate the...Ch. 6 - A line in the Lyman series (nlo=1) occurs at 97.23...Ch. 6 - In the Pfund series, nlo=5. Calculate the longest...Ch. 6 - What are the possible values for m l for (a) the d...Ch. 6 - What are the possible values for m l for (a) the d...Ch. 6 - For the following pairs of orbitals, indicate...Ch. 6 - For the following pairs of orbitals, indicate...Ch. 6 - What type of electron orbital (i.e., s, p, d, or...Ch. 6 - What type of electron orbital (i.e., s, p, d, or...Ch. 6 - What is the total electron capacity for (a)...Ch. 6 - Give the number of orbitals in (a) n=3(b) a 4p...Ch. 6 - How many electrons in an atom can following...Ch. 6 - How many electrons in an atom can have the...Ch. 6 - Given the following sets of quantum numbers,...Ch. 6 - Given the following sets of electron quantum...Ch. 6 - Write the ground state electron configuration for...Ch. 6 - Write the ground state electron configuration for...Ch. 6 - Write an abbreviated ground state electron...Ch. 6 - Prob. 32QAPCh. 6 - Give the symbol of the element of lowest atomic...Ch. 6 - Give the symbol of the element of lowest atomic...Ch. 6 - What fraction of the total number of electrons is...Ch. 6 - What fraction of the total number of electrons is...Ch. 6 - Which of the following electron configurations...Ch. 6 - Which of the following electron configurations...Ch. 6 - Write the orbital diagram for (a) Li(b) P(c) F(d)...Ch. 6 - Write the orbital diagram tor an atom of (a) Na...Ch. 6 - Give the symbol of the atom with the following...Ch. 6 - What is the symbol of the atom with the following...Ch. 6 - Write the symbol of (a) all the elements in which...Ch. 6 - Write the symbols of (a) all the elements in...Ch. 6 - How many unpaired electrons are there in an atom...Ch. 6 - How many unpaired electrons are there in the...Ch. 6 - In what main group(s) of the periodic table do...Ch. 6 - Give the symbol of the main-group metals in period...Ch. 6 - Write the ground state electron configuration for...Ch. 6 - Write the ground state electron configuration for...Ch. 6 - How many unpaired electrons are there 111 the...Ch. 6 - How many unpaired electrons are there in the...Ch. 6 - Arrange the elements Na, Si, and S in the order of...Ch. 6 - Arrange the elements Mg, S, and Cl in order of (a)...Ch. 6 - Which of the four atoms Rb, Sr, Sb, or Cs (a) has...Ch. 6 - Which of the four atoms Na, P, Cl, or K (a) has...Ch. 6 - Select the larger member of each pair. (a) Ca and...Ch. 6 - Select the smaller member of each pair. (a) P and...Ch. 6 - Prob. 59QAPCh. 6 - Prob. 60QAPCh. 6 - A lightbulb radiates 8.5% of the energy supplied...Ch. 6 - The speed of a computer chip is measured by its...Ch. 6 - A carbon dioxide laser produces radiation of...Ch. 6 - Name and give the symbol of the element that has...Ch. 6 - Compare the energies and frequencies of two...Ch. 6 - Consider the following transitions 1. n=3 to n=1...Ch. 6 - Write the symbol of each element described below....Ch. 6 - Answer the following questions. (a) What...Ch. 6 - Explain in your own words what is meant by (a) the...Ch. 6 - Explain the difference between (a) the Bohr model...Ch. 6 - Indicate whether each of the following statements...Ch. 6 - Criticize or comment on the following statements:...Ch. 6 - No currently known elements contain electrons in g...Ch. 6 - Prob. 74QAPCh. 6 - Explain why (a) negative ions are larger than...Ch. 6 - The energy of any one-electron species in its nth...Ch. 6 - In 1885, Johann Balmer, a mathematician, derived...Ch. 6 - Prob. 78QAPCh. 6 - Suppose that the spin quantum number could have...Ch. 6 - In the photoelectric effect, electrons are ejected...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY