 # A 90.0-kg fullback running cast with a speed of 5.00 m/s is tackled by a 95.0-kg opponent running north with a speed of 3.00 m/s. (a) Why does the tackle constitute a perfectly inelastic collision? (b) Calculate the velocity of the players immediately after the tackle and (c) determine the mechanical energy that is lost as a result of the collision, (d) Where did the lost energy go? ### College Physics

11th Edition
Raymond A. Serway + 1 other
Publisher: Cengage Learning
ISBN: 9781305952300 ### College Physics

11th Edition
Raymond A. Serway + 1 other
Publisher: Cengage Learning
ISBN: 9781305952300

#### Solutions

Chapter
Section
Chapter 6, Problem 49P
Textbook Problem

## A 90.0-kg fullback running cast with a speed of 5.00 m/s is tackled by a 95.0-kg opponent running north with a speed of 3.00 m/s. (a) Why does the tackle constitute a perfectly inelastic collision? (b) Calculate the velocity of the players immediately after the tackle and (c) determine the mechanical energy that is lost as a result of the collision, (d) Where did the lost energy go?

Expert Solution

(a)

To determine
Why does the tackle constitute a perfectly inelastic collision.

### Explanation of Solution

The time interval of the collision is too small that the external forces have no effect on the collision. As the two players move together after the ta...

Expert Solution

(b)

To determine
The velocity of the players immediately after the tackle.

Expert Solution

(c)

To determine
The mechanical energy that is lost as a result of the collision.

Expert Solution

(d)

To determine
Where did the lost energy go.

### Want to see the full answer?

Check out a sample textbook solution.See solution

### Want to see this answer and more?

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

See solution 