Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 6, Problem 7P

You are working during your summer break as an amusement park ride operator. The ride you are controlling consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away (Fig. P6.7). The coefficient of static friction between a person of mass m and the wall is μs, and the radius of the cylinder is R. You are rotating the ride with an angular speed ω suggested by your supervisor. (a) Suppose a very heavy person enters the ride. Do you need to increase the angular speed so that this person will not slide down the wall? (b) Suppose someone enters the ride wearing a very slippery satin workout outfit. In this case, do you need to increase the angular speed so that this person will not slide down the wall?

Figure P6.7

Chapter 6, Problem 7P, You are working during your summer break as an amusement park ride operator. The ride you are

Blurred answer
Students have asked these similar questions
A 50.0-kg child stands at the rim of a merry-go-round of radius 2.00 m, rotating with an angular speed of 3.00 rad/s. (a) What is the child’s centripetal acceleration? (b) What is the minimum force between her feet and the floor of the carousel that is required to keep her in the circular path? (c) What minimum coefficient of static friction is required? Is the answer you found reasonable? In other words, is she likely to stay on the merry-go-round?
A 50.0kg child stands at the rim of a merry-go-round of radius 2.20m, rotating with an angular speed of 3.25 rad/s. A) what is the child’s centripetal acceleration? M/s^2 B) what is the minimum force between her feet and the floor of the carousel that is required to keep her in the circular path? C) what minimum coefficient of static friction is required? Is the answer you found reasonable? In other words, is she likely to stay on the merry-go-round? Yes or No
A single bead can slide with negligible friction on a stiff wire that has been bent into a circular loop of radius 15.0 cm as shown in Figure P6.68. The circle is always in a vertical plane and rotates steadily about its vertical diameter with a period of 0.450 s. The position of the bead is described by the angle h that the radial line, from the center of the loop to the bead, makes with the vertical, (a) At what angle up from the bottom of the circle can the bead stay motionless relative to the turning circle? (b) What If? Repeat the problem, this time taking the period of the circle's rotation as 0.850 s. (c) Describe how the solution to part (b) is different from the solution to part (a), (d) For any period or loop size, is there always an angle at which the bead can stand still relative to the loop? (e) Are there ever more than two angles? Arnold Arons suggested the idea for this problem.

Chapter 6 Solutions

Physics for Scientists and Engineers

Ch. 6 - You are working during your summer break as an...Ch. 6 - A driver is suing the state highway department...Ch. 6 - A hawk flies in a horizontal arc of radius 12.0 m...Ch. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - A child of mass m swings in a swing supported by...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 21PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - Because the Earth rotates about its axis, a point...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Galileo thought about whether acceleration should...Ch. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - In Example 6.5, we investigated the forces a child...Ch. 6 - Review. A piece of putty is initially located at...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Because of the Earths rotation, a plumb bob does...Ch. 6 - You have a great job working at a major league...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • A solid sphere has a uniformly distributed mass of 1.0 * 104 kg and a radius of 1.0 m.What is the magnitude of the gravitational force due to the sphere on a particle of mass m when the particle is located at a distance of (a) 1.5 m and (b) 0.50 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r < 1.0 m from the center of the sphere.
    A) how large must the coefficient of static friction be between the tires and the road if a car is to round a level curve of radius 125m at a speed of 95km/ h? B) a 15.0 kg child is riding a playground merry go round that is rotating at 45 rpm. What centripetal force must she exert to stay on if she is 1.00 m from its center?  C)what centripetal force does she need to stay on an amusement park merry go round that rotates at 3.00 rpm if she is 8.50m from its center?
    A common carnival ride, called a gravitron, is a large cylinder in which people stand against the wall of the ride as it rotates. At a certain point the floor of the cylinder lowers and the people are surprised that they don't slide down. Suppose the radius of the cylinder is r = 11 m, and the friction between the wall and their clothes is μs = 0.55. Consider the tangential speed v of the ride's occupants as the cylinder spins.  a. What is the frequency f in revolutions per minute of the carnival ride when it has reached the minimum speed to "stick" someone to the wall?
  • A load of 52 kg is placed on the flatbed of a truck going around a section of flat road corresponding to a circular arc with a radius of 80 m. If the coefficient of static friction between the load and the truck's flatbed is 0.355, what is the maximum speed the truck can have so the load won't slide? a) 28.0 m/s b) 5.33 m/s c) 16.7 m/s d) 22.6 m/s e) 279 m/s
    A simple pendulum with a massless string of length = 40cm and bob of mass m = 1.18kg is released from rest at t = 0s with initial angle theta= 5.80° measured relative to the vertical direction. (a) What angle does the total translational acceleration vector of the bob make with the radial direction at t = 0.34 s? (b) What is the tension in the string at t = 0.42 s?
    . You are working during your summer break as an amusement park ride operator. The ride you are controlling consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away (Fig. P6.7). The coefficient of static friction between a person of mass m and the wall is ms, and the radius of the cylinder is R. You are rotating the ride with an angular speed v suggested by your supervisor. (a) Suppose a very heavy person enters the ride. Do you need to increase the angular speed so that this person will not slide down the wall? (b) Suppose someone enters the ride wearing a very slip-pery satin workout outfit. In this case, do you need to increase the angular speed so that this person will not slide down the wall?
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
  • Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
  • Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
    What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY