
The Heart of Mathematics: An Invitation to Effective Thinking
4th Edition
ISBN: 9781118156599
Author: Edward B. Burger, Michael Starbird
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.1, Problem 30MS
Little League lesson. (H) You are in charge of scheduling the baseball games for your town’s Little League. There are 11 teams in your league. Usually you play ten games in a season, but some of the coaches want to extend the season to 13 games. So every team would play 13 games (thus playing more than one game against some of the teams). How will you explain to the coaches why this plan can never work?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the antiderivative for each function when C equals 0. Check your answers by differentiation.
2
(a) h(x) =
3x
-
1
3
2
-
4
dy+,
-
3
3
(c) k(x) =
X
(b) g(x) = 3x
(a) H(x) =
(b) G(x) =
(c) K(x) =
find integral of curves dx/(x + y) = dy/(x + y) = dz/−(x + y + 2z)
Consider the integral
X
-dx with n = 4.
a. Find the trapezoid rule approximations to the integral using n and 2n subintervals.
b. Find the Simpson's rule approximation to the integral using 2n subintervals.
c. Compute the absolute errors in the trapezoid rule and Simpson's rule with 2n subintervals.
a. What is the trapezoid approximation with n subintervals?
T(4)=(Round to six decimal places as needed.)
What is the trapezoid approximation with 2n subintervals?
T(8) = (Round to six decimal places as needed.)
b. What is the Simpson's rule approximation with 2n subintervals?
S(8)=(Round to six decimal places as needed.)
c. What is the error in the trapezoid rule approximation with 2n subintervals?
(Round to six decimal places as needed.)
What is the error in the Simpson's rule approximation with 2n subintervals?
(Round to six decimal places as needed.)
Chapter 6 Solutions
The Heart of Mathematics: An Invitation to Effective Thinking
Ch. 6.1 - Map maker, map maker make me a graph. Represent...Ch. 6.1 - Unabridged list. Represent cach landmass from...Ch. 6.1 - Will the walk work? Does your graph from...Ch. 6.1 - Walk around the house. Is it possibel to traverse...Ch. 6.1 - Walk the line. Does this graph above have an Euler...Ch. 6.1 - Walkabout. Does this graph have an Euler circuit?...Ch. 6.1 - Linking the loops. In this map, the following...Ch. 6.1 - Scenic drive. (S) Here is a map of Rockystone...Ch. 6.1 - Under-edged. (H) Does this graph have an Euler...Ch. 6.1 - No man is an island. The country of Pelago...
Ch. 6.1 - Path-o-rama. For each graph below, determine if...Ch. 6.1 - Walk around the block. Create a graph of the...Ch. 6.1 - Walking the dogs. Your dogs, Abbey and Bear, love...Ch. 6.1 - Delivery query. The next time you see a postal...Ch. 6.1 - Snow job. (ExH) Shown here is a map of the tiny...Ch. 6.1 - Special delivery. (ExH) Julia is the letter...Ch. 6.1 - Draw this old house. Suppose you wanted to trace...Ch. 6.1 - Path of no return. Consider this map showing a...Ch. 6.1 - Without a trace. Is it possibel to trace out...Ch. 6.1 - New Euler. In the three previous Mindscapes, you...Ch. 6.1 - New edge—new circuit. Look at the graph for...Ch. 6.1 - New edge—new path. Review your work for...Ch. 6.1 - Path to proof. Suppose you have a connected graph...Ch. 6.1 - No Euler no how. Look at graph (a) for Mindscape...Ch. 6.1 - Degree day. (S) For cach graph below, determine...Ch. 6.1 - degrees of proof. Review your work for Mindscape...Ch. 6.1 - Degrees in sequence. Can you draw a graph that has...Ch. 6.1 - Even Steven. Review your work in Mindscape 28 to...Ch. 6.1 - Little League lesson. (H) You are in charge of...Ch. 6.1 - With a group of folks. In a small group, discuss...Ch. 6.1 - Power beyond the mathematics. Provide several...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.2 - What a character! What expression gives the Euler...Ch. 6.2 - Count, then verify. What are the values of V, E,...Ch. 6.2 - Sneeze, then verify. Look at an unopened tissue...Ch. 6.2 - Blow, then verify. Inflate a ballon and use a...Ch. 6.2 - Add one. Find the values V, E, and F for the graph...Ch. 6.2 - Bowling. What is the Euler Characteristic of the...Ch. 6.2 - Making change. We begin with the graph pictured at...Ch. 6.2 - Making a point. Take a connected graph and add a...Ch. 6.2 - On the edge (H). Is it possible to add an edge to...Ch. 6.2 - Soap films. Consider the following sequence of...Ch. 6.2 - Dualing. What is the relationship between the...Ch. 6.2 - Prob. 12MSCh. 6.2 - Lots of separation. Suppose we are told that a...Ch. 6.2 - Prob. 14MSCh. 6.2 - Psychic readings. Someone is thinking of a...Ch. 6.2 - Prob. 16MSCh. 6.2 - Prob. 17MSCh. 6.2 - Circular reasoning. Create a connected graph as...Ch. 6.2 - Prob. 19MSCh. 6.2 - More circles. Consider the sphere described in...Ch. 6.2 - In the rough (S). Count the number of facets,...Ch. 6.2 - Cutting corners (H). The following collection of...Ch. 6.2 - Stellar. The following collection of pictures...Ch. 6.2 - A torus graph (ExH). The Euler Characteristic...Ch. 6.2 - Regular unfolding. Each graph below represents...Ch. 6.2 - A tale of two graphs. Suppose we draw a graph that...Ch. 6.2 - Two graph conjectures (S). Can you conjecture a...Ch. 6.2 - Lots of graphs conjecture. Can you conjecture a...Ch. 6.2 - Torus count. Three hollowed, triangular prisms...Ch. 6.2 - Torus two count (H). Carefully count the number of...Ch. 6.2 - Torus many count. Using the preceding calculations...Ch. 6.2 - Prob. 32MSCh. 6.2 - Tell the truth. Someone said that she made a...Ch. 6.2 - No sphere. Suppose we have a sphere built out of...Ch. 6.2 - Soccer ball. A soccer ball is made of pentagons...Ch. 6.2 - Klein bottle. Using the diagram here for building...Ch. 6.2 - Not many neighbors. Show that every map has at...Ch. 6.2 - Infinite edges. Suppose we consider a conn ected...Ch. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.2 - Prob. 44MSCh. 6.2 - Prob. 45MSCh. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.3 - Dont be cross. Here is a drawing of a graph with...Ch. 6.3 - De Plane! De Plane! (S) Is the graph given in...Ch. 6.3 - Countdown (H). For the graph drawing shown, count...Ch. 6.3 - Prob. 4MSCh. 6.3 - Criss-Cross. Is it possible to redraw the graph...Ch. 6.3 - Dont cross in the edge. Each of the graphs drawn...Ch. 6.3 - Hot crossed buns. Each of the graphs drawn below...Ch. 6.3 - Prob. 8MSCh. 6.3 - Spider on a mirror. Is it possible to redraw the...Ch. 6.3 - One more vertex. The graph here is drawn to show...Ch. 6.3 - Yet one more vertex (H). The graph shown is drawn...Ch. 6.3 - Familiar freckles. Is it possible to redraw the...Ch. 6.3 - Remind you of anyone you know? Is it possible to...Ch. 6.3 - Final countdown. For this graph drawing, count the...Ch. 6.3 - Euler check-up. Use your answer to the previous...Ch. 6.3 - Euler second opinion. For the graph drawing shown...Ch. 6.3 - Prob. 17MSCh. 6.3 - Prob. 18MSCh. 6.3 - A colorful museum. This figure shows the floor...Ch. 6.3 - Limit of 5. Start drawing a planar graph. Keep...Ch. 6.3 - Starring the hexagon. Is it possible to redraw...Ch. 6.3 - Prob. 22MSCh. 6.3 - Prob. 23MSCh. 6.3 - Getting greedy. (H) Suppose you are asked to color...Ch. 6.3 - Stingy rather than greedy. By coloring the...Ch. 6.3 - Getting more colorful. Graphs dont have to be...Ch. 6.3 - Prob. 27MSCh. 6.3 - Prob. 28MSCh. 6.3 - Chromatically applied. There are eight radio...Ch. 6.3 - Prob. 30MSCh. 6.3 - Personal perspectives. Write a short essay...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Prob. 37MSCh. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.4 - Up close and personal. Create a graph to model...Ch. 6.4 - Network lookout. Find an examle of a network...Ch. 6.4 - Prob. 3MSCh. 6.4 - Hamiltonian holiday (S). You are interning for a...Ch. 6.4 - Home style. Create a graph to model the rooms in...Ch. 6.4 - Six degrees or less. Suppose this graph is a model...Ch. 6.4 - Degrees of you. Find ten willing friends or...Ch. 6.4 - Campus shortcut. Find a map of your campus and...Ch. 6.4 - Arborist lesson. Which of the graphs below are...Ch. 6.4 - Prob. 10MSCh. 6.4 - Prob. 11MSCh. 6.4 - Prob. 12MSCh. 6.4 - Prob. 13MSCh. 6.4 - Prob. 14MSCh. 6.4 - Prob. 15MSCh. 6.4 - Hamilton Study. Look at the graph you drew to...Ch. 6.4 - Business trip redux. Look back in the section and...Ch. 6.4 - Handling Hamiltons. For each graph below, find a...Ch. 6.4 - Road trip. You are checking out gradua te programs...Ch. 6.4 - Back to Hatties trip. Look back in this section...Ch. 6.4 - Solve the Icosian Game. Find a Hamiltonian circuit...Ch. 6.4 - Hunt for Hamilton (S). A large island country has...Ch. 6.4 - Has no Hamilton. Give some characteristics that...Ch. 6.4 - Cubing Hamilton (ExH). Can you find a Hamihonian...Ch. 6.4 - Hamiltonian path. A Hamiltonian path is a path in...Ch. 6.4 - Sorry, no path. Give some characteristics that...Ch. 6.4 - Prob. 27MSCh. 6.4 - Prob. 28MSCh. 6.4 - Prob. 29MSCh. 6.4 - Prob. 30MSCh. 6.4 - Edge count. Look at all the trees you drew in the...Ch. 6.4 - Personal perspecthes. Write a short essay...Ch. 6.4 - Prob. 33MSCh. 6.4 - Prob. 34MSCh. 6.4 - Dollars and cents. Your spanning tree has three...Ch. 6.4 - Adding up. Your spanning tree has four edges with...Ch. 6.4 - Prob. 38MSCh. 6.4 - Vertex search (H). Your graph has a Hamiltonian...Ch. 6.4 - Binary gossip tree. You told a secret to two of...
Additional Math Textbook Solutions
Find more solutions based on key concepts
The simplified expression
Pre-Algebra Student Edition
Divergence Test Use the Divergence Test to determine whether the following series diverge or state that the tes...
Calculus: Early Transcendentals (2nd Edition)
Sampling Method. In Exercises 9-12, determine whether the sampling method appears to be sound or is flawed.
9. ...
Elementary Statistics
What is the domain and the range of y=secx ?
Precalculus
Choose one of the answers in each case. In statistical inference, measurements are made on a (sample or popula...
Introductory Statistics
Show that 34=12 using each of the following models. a. Repeated-addition number line b. Rectangular array c. Ar...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 00 fe Suppose that the probability that a particular computer chip fails after t = a hours of operation is 0.00004 0.00004 dt. a a. Find the probability that the computer chip fails after 16.000 hr of operation (that is, the chip lasts at least 16,000 hr). b. Of the chips that are still in operation after 16,000 hr, what fraction of these will operate for at least another 16,000 hr? c. Evaluate 0.00004 Se -0.000041 dt and interpret its meaning. a. The probability that the chip fails after 16,000 hr of operation is (Round to three decimal places as needed.) b. The fraction that will still be operating for at least another 16.000 hr is (Round to three decimal places as needed.) c. Choose the correct answer below. OA. The probability that the chip never fails is 0.00004 -0.00004t dt= OB. The probability that the chip eventually fails is 0.00004 S 0.00004 dt = dt= -0.000041 dt= OC. The probability that the chip fails immediately is 0.00004 OD. There is not enough information to interpret…arrow_forwardFind the volume of the described solid of revolution or state that it does not exist. The region bounded by f(x) = (x-5) and the x-axis on the interval (5,7] is revolved about the x-axis. Find the volume or state that it does not exist. Select the correct answer and, if necessary, fill in the box to complete your choice. OA. The volume is cubic units. (Type an exact answer.) OB. The volume does not exist.arrow_forwardUse the reduction formulas in a table of integrals to evaluate Sx³e 3 18x dx. Click here to view basic integrals. Click here to view trigonometric integrals. Click here to view √x³e 18x dx = ☐arrow_forward
- Evaluate the following integral using trigonometric substitution. 2√√3 x² √16-x - dx What substitution will be the most helpful for evaluating this integral? A. x=4 sec 0 OB. x=4 sin 0 OC. x=4 tan 0 Rewrite the given integral using this substitution. 2√√3 X 2 dx= de 0 √16-x (Type exact answers.) Evaluate the integral. 2√3 0 2 x² √16-x 2 dx = (Type an exact answer.)arrow_forwardUse the following three identities to evaluate sin sx cos tx = sin sx sin tx = COS Sx cos tx = 1 S sin (s+t)x + sin (s-t)x] sin 14x cos 11x dx. [cos (s+t)x- cos (s-t)x] 2[cos (s+t)x + cos(s-t)x] S sin 14x cos 11x dx = ☐arrow_forwardEvaluate the following integral. [11 2x 2x sin 11 sin x cos x dx √11 sin 11 sin 2x cos 2x dx = ☐arrow_forward
- Evaluate the following integral using trigonometric substitution. X dx √36+x 2 X √36+x 2 dx = (Type an exact answer. Use parentheses to clearly denote the argument of each function.)arrow_forwardINTEGRAL CALCULUS TAKE HOME 1. Find the location of the centroid of the area bounded by y2 = 9x and y = 3x. 2. Find the average value of the function f(x)= 2x + 14 on the interval [-7, 7]. 3. Find the volume of the solid formed by revolving the area bounded by the parabola y² = 9x and the line y = 3x about the y- axis. f 4. Evaluate the integral 22+5x-14 5. Evaluate the integral fodx. dx. 6. Determine the length of x=4(3+y)² from y = 1 to y=4. 7. Determine the volume of the solid obtained by rotating the region bounded by y = x²-6x+9 and y=-x²+6x-1 about the line x = 8. -G 8. A force of F(x) = x²- cos(3x)+2, where x is in meters, acts on an object. What is the work required to move the object from x=3 tox=7? 9. Calculate the work done in pumping out the water filling a hemispherical reservoir 5 m deep. 10. Find the moment of inertial with respect to y-axis of the area bounded by the parabola x²== 8y, the line x = 4, and the x-axis on the first quadrant.arrow_forwardsolve the limitarrow_forward
- 2) Consider the function f(x) 3(x-2)(2x+5) == 3 x-x-14x+24 Determine the following key features of the function f(x): X-intercept(s) Y-intercept Equation(s) of asymptotes Domainarrow_forwardPls help ASAP PLS LIKE ASAParrow_forwardLet m be the line given by the equation x + y = 1 in R² and let n be the line given by the equation -x in R². What is the image of the point P: (a, b) in R² under the transformation rnrm? y =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell


Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
The Shape of Data: Distributions: Crash Course Statistics #7; Author: CrashCourse;https://www.youtube.com/watch?v=bPFNxD3Yg6U;License: Standard YouTube License, CC-BY
Shape, Center, and Spread - Module 20.2 (Part 1); Author: Mrmathblog;https://www.youtube.com/watch?v=COaid7O_Gag;License: Standard YouTube License, CC-BY
Shape, Center and Spread; Author: Emily Murdock;https://www.youtube.com/watch?v=_YyW0DSCzpM;License: Standard Youtube License