BuyFindarrow_forward

Calculus (MindTap Course List)

11th Edition
Ron Larson + 1 other
ISBN: 9781337275347

Solutions

Chapter
Section
BuyFindarrow_forward

Calculus (MindTap Course List)

11th Edition
Ron Larson + 1 other
ISBN: 9781337275347
Textbook Problem

Think About It It is known that y = A sin ω t is a solution of the differential equation

y + 16 y = 0 . Find the value(s) of ω .

To determine

To Calculate: The value(s) of ω for the differential equation y+16y=0.

Explanation

Given: y=Asinωt is a solution of the differential equation y+16y=0.

Formula Used:

ddtsinωt=ωcosωt

ddtcosωt=ωsinωt

Calculation:

Differentiating the solution y=Asinωt with respect to t, we get

dydt=Addtsinωt

y=Aωcosωt.........

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-6.1 P-11ESect-6.1 P-12ESect-6.1 P-13ESect-6.1 P-14ESect-6.1 P-15ESect-6.1 P-16ESect-6.1 P-17ESect-6.1 P-18ESect-6.1 P-19ESect-6.1 P-20ESect-6.1 P-21ESect-6.1 P-22ESect-6.1 P-23ESect-6.1 P-24ESect-6.1 P-25ESect-6.1 P-26ESect-6.1 P-27ESect-6.1 P-28ESect-6.1 P-29ESect-6.1 P-30ESect-6.1 P-31ESect-6.1 P-32ESect-6.1 P-33ESect-6.1 P-34ESect-6.1 P-35ESect-6.1 P-36ESect-6.1 P-37ESect-6.1 P-38ESect-6.1 P-39ESect-6.1 P-40ESect-6.1 P-41ESect-6.1 P-42ESect-6.1 P-43ESect-6.1 P-44ESect-6.1 P-45ESect-6.1 P-46ESect-6.1 P-47ESect-6.1 P-48ESect-6.1 P-49ESect-6.1 P-50ESect-6.1 P-51ESect-6.1 P-52ESect-6.1 P-53ESect-6.1 P-54ESect-6.1 P-55ESect-6.1 P-56ESect-6.1 P-57ESect-6.1 P-58ESect-6.1 P-59ESect-6.1 P-60ESect-6.1 P-61ESect-6.1 P-62ESect-6.1 P-63ESect-6.1 P-64ESect-6.1 P-65ESect-6.1 P-66ESect-6.1 P-67ESect-6.1 P-68ESect-6.1 P-69ESect-6.1 P-70ESect-6.1 P-71ESect-6.1 P-72ESect-6.1 P-73ESect-6.1 P-74ESect-6.1 P-75ESect-6.1 P-76ESect-6.1 P-77ESect-6.1 P-78ESect-6.1 P-79ESect-6.1 P-80ESect-6.1 P-81ESect-6.1 P-82ESect-6.1 P-83ESect-6.1 P-84ESect-6.1 P-85ESect-6.1 P-86ESect-6.1 P-87ESect-6.1 P-88ESect-6.1 P-89ESect-6.1 P-90ESect-6.1 P-91ESect-6.1 P-92ESect-6.1 P-93ESect-6.1 P-94ESect-6.1 P-95ESect-6.1 P-96ESect-6.2 P-1ESect-6.2 P-2ESect-6.2 P-3ESect-6.2 P-4ESect-6.2 P-5ESect-6.2 P-6ESect-6.2 P-7ESect-6.2 P-8ESect-6.2 P-9ESect-6.2 P-10ESect-6.2 P-11ESect-6.2 P-12ESect-6.2 P-13ESect-6.2 P-14ESect-6.2 P-15ESect-6.2 P-16ESect-6.2 P-17ESect-6.2 P-18ESect-6.2 P-19ESect-6.2 P-20ESect-6.2 P-21ESect-6.2 P-22ESect-6.2 P-23ESect-6.2 P-24ESect-6.2 P-25ESect-6.2 P-26ESect-6.2 P-27ESect-6.2 P-28ESect-6.2 P-29ESect-6.2 P-30ESect-6.2 P-31ESect-6.2 P-32ESect-6.2 P-33ESect-6.2 P-34ESect-6.2 P-35ESect-6.2 P-36ESect-6.2 P-37ESect-6.2 P-38ESect-6.2 P-39ESect-6.2 P-40ESect-6.2 P-41ESect-6.2 P-42ESect-6.2 P-43ESect-6.2 P-44ESect-6.2 P-45ESect-6.2 P-46ESect-6.2 P-47ESect-6.2 P-48ESect-6.2 P-49ESect-6.2 P-50ESect-6.2 P-51ESect-6.2 P-52ESect-6.2 P-53ESect-6.2 P-54ESect-6.2 P-55ESect-6.2 P-56ESect-6.2 P-57ESect-6.2 P-58ESect-6.2 P-59ESect-6.2 P-60ESect-6.2 P-61ESect-6.2 P-62ESect-6.2 P-63ESect-6.2 P-64ESect-6.2 P-65ESect-6.2 P-66ESect-6.2 P-67ESect-6.2 P-68ESect-6.3 P-1ESect-6.3 P-2ESect-6.3 P-4ESect-6.3 P-5ESect-6.3 P-6ESect-6.3 P-7ESect-6.3 P-8ESect-6.3 P-9ESect-6.3 P-10ESect-6.3 P-11ESect-6.3 P-12ESect-6.3 P-13ESect-6.3 P-14ESect-6.3 P-15ESect-6.3 P-16ESect-6.3 P-17ESect-6.3 P-18ESect-6.3 P-19ESect-6.3 P-20ESect-6.3 P-21ESect-6.3 P-22ESect-6.3 P-23ESect-6.3 P-25ESect-6.3 P-26ESect-6.3 P-27ESect-6.3 P-28ESect-6.3 P-29ESect-6.3 P-30ESect-6.3 P-31ESect-6.3 P-32ESect-6.3 P-33ESect-6.3 P-34ESect-6.3 P-35ESect-6.3 P-36ESect-6.3 P-37ESect-6.3 P-38ESect-6.3 P-39ESect-6.3 P-40ESect-6.3 P-41ESect-6.3 P-42ESect-6.3 P-43ESect-6.3 P-44ESect-6.3 P-45ESect-6.3 P-46ESect-6.3 P-47ESect-6.3 P-48ESect-6.3 P-63ESect-6.3 P-64ESect-6.3 P-66ESect-6.3 P-67ESect-6.3 P-69ESect-6.3 P-70ESect-6.3 P-71ESect-6.3 P-72ESect-6.3 P-73ESect-6.3 P-74ESect-6.3 P-75ESect-6.3 P-76ESect-6.3 P-77ESect-6.3 P-78ESect-6.3 P-79ESect-6.3 P-80ESect-6.3 P-81ESect-6.3 P-82ESect-6.3 P-83ESect-6.3 P-84ESect-6.3 P-85ESect-6.3 P-86ESect-6.3 P-3ESect-6.3 P-24ESect-6.3 P-49ESect-6.3 P-50ESect-6.3 P-51ESect-6.3 P-52ESect-6.3 P-53ESect-6.3 P-54ESect-6.3 P-55ESect-6.3 P-56ESect-6.3 P-57ESect-6.3 P-58ESect-6.3 P-59ESect-6.3 P-60ESect-6.3 P-61ESect-6.3 P-62ESect-6.3 P-65ESect-6.3 P-68ESect-6.4 P-1ESect-6.4 P-2ESect-6.4 P-3ESect-6.4 P-4ESect-6.4 P-5ESect-6.4 P-6ESect-6.4 P-7ESect-6.4 P-8ESect-6.4 P-9ESect-6.4 P-10ESect-6.4 P-11ESect-6.4 P-12ESect-6.4 P-13ESect-6.4 P-14ESect-6.4 P-15ESect-6.4 P-16ESect-6.4 P-17ESect-6.4 P-18ESect-6.4 P-19ESect-6.4 P-20ESect-6.4 P-21ESect-6.4 P-22ESect-6.4 P-23ESect-6.4 P-24ESect-6.4 P-25ESect-6.4 P-26ESect-6.4 P-27ESect-6.4 P-28ESect-6.4 P-29ESect-6.4 P-30ESect-6.4 P-31ESect-6.4 P-32ESect-6.4 P-33ESect-6.4 P-34ESect-6.4 P-35ESect-6.4 P-36ESect-6.4 P-37ESect-6.4 P-38ESect-6.4 P-39ESect-6.4 P-40ESect-6.4 P-41ESect-6.4 P-42ESect-6.4 P-43ESect-6.4 P-44ESect-6.4 P-45ESect-6.4 P-46ESect-6.4 P-47ESect-6.4 P-48ESect-6.4 P-49ESect-6.4 P-50ESect-6.4 P-51ESect-6.4 P-52ESect-6.4 P-53ESect-6.4 P-54ESect-6.4 P-55ESect-6.4 P-56ESect-6.4 P-57ESect-6.4 P-58ESect-6.4 P-59ESect-6.4 P-60ESect-6.4 P-61ESect-6.4 P-62ESect-6.4 P-63ESect-6.4 P-64ESect-6.4 P-65ESect-6.4 P-66ECh-6 P-1RECh-6 P-2RECh-6 P-3RECh-6 P-4RECh-6 P-5RECh-6 P-6RECh-6 P-7RECh-6 P-8RECh-6 P-9RECh-6 P-10RECh-6 P-11RECh-6 P-12RECh-6 P-13RECh-6 P-14RECh-6 P-15RECh-6 P-16RECh-6 P-17RECh-6 P-18RECh-6 P-19RECh-6 P-20RECh-6 P-21RECh-6 P-22RECh-6 P-23RECh-6 P-24RECh-6 P-25RECh-6 P-26RECh-6 P-27RECh-6 P-28RECh-6 P-29RECh-6 P-30RECh-6 P-31RECh-6 P-32RECh-6 P-33RECh-6 P-34RECh-6 P-35RECh-6 P-36RECh-6 P-37RECh-6 P-38RECh-6 P-39RECh-6 P-40RECh-6 P-41RECh-6 P-42RECh-6 P-43RECh-6 P-44RECh-6 P-45RECh-6 P-46RECh-6 P-47RECh-6 P-48RECh-6 P-49RECh-6 P-50RECh-6 P-51RECh-6 P-52RECh-6 P-53RECh-6 P-54RECh-6 P-55RECh-6 P-56RECh-6 P-57RECh-6 P-58RECh-6 P-59RECh-6 P-60RECh-6 P-61RECh-6 P-62RECh-6 P-1PSCh-6 P-2PSCh-6 P-3PSCh-6 P-4PSCh-6 P-5PSCh-6 P-6PSCh-6 P-7PSCh-6 P-8PSCh-6 P-9PSCh-6 P-10PSCh-6 P-11PSCh-6 P-12PSCh-6 P-13PS

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 9-12, find the domain of the function. f(x)=6xx3+x

Calculus: An Applied Approach (MindTap Course List)

let f(x) = x 1, g(x) = x+1, and h(x) = 2x3 1. Find the rule for each function. 18. ghgf

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

22. If are disjoint sets, what does equal?

Mathematical Applications for the Management, Life, and Social Sciences

If the area of rectangle ABCD is 46 cm2, find the area of ABE.

Elementary Geometry For College Students, 7e

Verifying an Identity In Exercises 11-18, verify the identity. sinh2x=1+cosh2x2

Calculus: Early Transcendental Functions (MindTap Course List)