BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
28 views

The following problem, devised by Ginger Bolton, apeared in the January 1989 issue of the College Mathematics Journal (Vol.20, No. 1, p.68); Given a positive integer n 2 , let S be the set of all nonempty subets of { 2 , 3 , ... , n } . For each S i S , let P i be the product of the elements of S i Prove or disprove tht

To determine

Prove or disprove that

i=12n11P1=(n+1)!21

Explanation

Given information The following problem, devised by Ginger Bolton, appeared in the January 1989 issue of the college Mathematics journal (Vol.20,No.1, p. 68): Given a positive integer n2, let S be the set of all nonempty subsets of {2,3,......,n}. For each SiS, let Pi be the product of the elements of Si.

Concept used:

Principle of mathematical induction is used to prove mathematical terms.

Calculation:

Let S be the set of all nonempty subsets of {2,3,.....,n} for any positive integer n2.

Write the following statement P(n) :

For each SiS let p1 be the product of the elements of Si such that summation of product is given by the formula i=12n11P1=(n+1)!21.

For n=2,S={{2}} and there is only single element of S, namely S1={2}.

Then P1=2

That is, the product of all nonempty subsets of {2} is 2.

Also

i=11p1=( n+1)!21=31=2

Thus, P(2) is true.

Now, prove that for all integers k2, it P(k) is true, then P(k+1) is also true.

Therefore, in the inductive step, consider the set of all nonempty subsets of {2,3,.....,k}

Now, for P(k+1), consider the set of all nonempty subsets of {2,3,.....,k+1}.

Now, any subset of {2,3,.....,k+1} either contains the element k+1 or does not contain the element k+1

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-6.1 P-11TYSect-6.1 P-1ESSect-6.1 P-2ESSect-6.1 P-3ESSect-6.1 P-4ESSect-6.1 P-5ESSect-6.1 P-6ESSect-6.1 P-7ESSect-6.1 P-8ESSect-6.1 P-9ESSect-6.1 P-10ESSect-6.1 P-11ESSect-6.1 P-12ESSect-6.1 P-13ESSect-6.1 P-14ESSect-6.1 P-15ESSect-6.1 P-16ESSect-6.1 P-17ESSect-6.1 P-18ESSect-6.1 P-19ESSect-6.1 P-20ESSect-6.1 P-21ESSect-6.1 P-22ESSect-6.1 P-23ESSect-6.1 P-24ESSect-6.1 P-25ESSect-6.1 P-26ESSect-6.1 P-27ESSect-6.1 P-28ESSect-6.1 P-29ESSect-6.1 P-30ESSect-6.1 P-31ESSect-6.1 P-32ESSect-6.1 P-33ESSect-6.1 P-34ESSect-6.1 P-35ESSect-6.1 P-36ESSect-6.1 P-37ESSect-6.1 P-38ESSect-6.2 P-1TYSect-6.2 P-2TYSect-6.2 P-3TYSect-6.2 P-4TYSect-6.2 P-5TYSect-6.2 P-6TYSect-6.2 P-1ESSect-6.2 P-2ESSect-6.2 P-3ESSect-6.2 P-4ESSect-6.2 P-5ESSect-6.2 P-6ESSect-6.2 P-7ESSect-6.2 P-8ESSect-6.2 P-9ESSect-6.2 P-10ESSect-6.2 P-11ESSect-6.2 P-12ESSect-6.2 P-13ESSect-6.2 P-14ESSect-6.2 P-15ESSect-6.2 P-16ESSect-6.2 P-17ESSect-6.2 P-18ESSect-6.2 P-19ESSect-6.2 P-20ESSect-6.2 P-21ESSect-6.2 P-22ESSect-6.2 P-23ESSect-6.2 P-24ESSect-6.2 P-25ESSect-6.2 P-26ESSect-6.2 P-27ESSect-6.2 P-28ESSect-6.2 P-29ESSect-6.2 P-30ESSect-6.2 P-31ESSect-6.2 P-32ESSect-6.2 P-33ESSect-6.2 P-34ESSect-6.2 P-35ESSect-6.2 P-36ESSect-6.2 P-37ESSect-6.2 P-38ESSect-6.2 P-39ESSect-6.2 P-40ESSect-6.2 P-41ESSect-6.2 P-42ESSect-6.2 P-43ESSect-6.2 P-44ESSect-6.3 P-1TYSect-6.3 P-2TYSect-6.3 P-3TYSect-6.3 P-1ESSect-6.3 P-2ESSect-6.3 P-3ESSect-6.3 P-4ESSect-6.3 P-5ESSect-6.3 P-6ESSect-6.3 P-7ESSect-6.3 P-8ESSect-6.3 P-9ESSect-6.3 P-10ESSect-6.3 P-11ESSect-6.3 P-12ESSect-6.3 P-13ESSect-6.3 P-14ESSect-6.3 P-15ESSect-6.3 P-16ESSect-6.3 P-17ESSect-6.3 P-18ESSect-6.3 P-19ESSect-6.3 P-20ESSect-6.3 P-21ESSect-6.3 P-22ESSect-6.3 P-23ESSect-6.3 P-24ESSect-6.3 P-25ESSect-6.3 P-26ESSect-6.3 P-27ESSect-6.3 P-28ESSect-6.3 P-29ESSect-6.3 P-30ESSect-6.3 P-31ESSect-6.3 P-32ESSect-6.3 P-33ESSect-6.3 P-34ESSect-6.3 P-35ESSect-6.3 P-36ESSect-6.3 P-37ESSect-6.3 P-38ESSect-6.3 P-39ESSect-6.3 P-40ESSect-6.3 P-41ESSect-6.3 P-42ESSect-6.3 P-43ESSect-6.3 P-44ESSect-6.3 P-45ESSect-6.3 P-46ESSect-6.3 P-47ESSect-6.3 P-48ESSect-6.3 P-49ESSect-6.3 P-50ESSect-6.3 P-51ESSect-6.3 P-52ESSect-6.3 P-53ESSect-6.3 P-54ESSect-6.4 P-1TYSect-6.4 P-2TYSect-6.4 P-3TYSect-6.4 P-1ESSect-6.4 P-2ESSect-6.4 P-3ESSect-6.4 P-4ESSect-6.4 P-5ESSect-6.4 P-6ESSect-6.4 P-7ESSect-6.4 P-8ESSect-6.4 P-9ESSect-6.4 P-10ESSect-6.4 P-11ESSect-6.4 P-12ESSect-6.4 P-13ESSect-6.4 P-14ESSect-6.4 P-15ESSect-6.4 P-16ESSect-6.4 P-17ESSect-6.4 P-18ESSect-6.4 P-19ESSect-6.4 P-20ESSect-6.4 P-21ESSect-6.4 P-22ESSect-6.4 P-23ESSect-6.4 P-24ESSect-6.4 P-25ESSect-6.4 P-26ESSect-6.4 P-27ESSect-6.4 P-28ESSect-6.4 P-29ES