BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

The center of a circle of radius 2 inches is at a distance of 10 inches from the center of a circle of radius length 3 inches. To the nearest tenth of an inch, what is the approximate length of a common internal tangent? Use the hint provided in Exercise 38.

(HINT: use similar triangles to find OD and DP. Then apply the Pythagorean Theorem twice.)

Chapter 6.3, Problem 39E, The center of a circle of radius 2 inches is at a distance of 10 inches from the center of a circle

To determine

To find:

To find length of a common internal tangent.

Explanation

Given that, the center of a circle of radius 2 in. is at a distance of 10 in. from the center of a circle of radius length 3 in.

That is OA¯=2,PB¯=3 and OP¯=10 then AB¯ is common internal tangent.

The diagrammatic representation is given below,

Since AB¯ is common internal tangent therefore, AB¯OA¯ and AB¯PB¯

Using the vertical angle theorem to get the following,

mADO=mPDBmOAD=mPBD

Therefore, mOADmPBD

If two triangles are similar, then the ration of any two corresponding segments (such as altitudes, medians, or angle bisectors) equals the ratio of any two corresponding sides.

OA¯PB¯=OD¯PD¯23=OD¯PD¯OD¯PD¯=233OD¯=2PD¯

We know that,

OP¯=OD¯+PD¯10=OD¯+PD¯PD¯=10OD¯. Since OP¯=10

Substitute this in the above equation to get the following,

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-6.1 P-11ESect-6.1 P-12ESect-6.1 P-13ESect-6.1 P-14ESect-6.1 P-15ESect-6.1 P-16ESect-6.1 P-17ESect-6.1 P-18ESect-6.1 P-19ESect-6.1 P-20ESect-6.1 P-21ESect-6.1 P-22ESect-6.1 P-23ESect-6.1 P-24ESect-6.1 P-25ESect-6.1 P-26ESect-6.1 P-27ESect-6.1 P-28ESect-6.1 P-29ESect-6.1 P-30ESect-6.1 P-31ESect-6.1 P-32ESect-6.1 P-33ESect-6.1 P-34ESect-6.1 P-35ESect-6.1 P-36ESect-6.1 P-37ESect-6.1 P-38ESect-6.1 P-39ESect-6.1 P-40ESect-6.1 P-43ESect-6.2 P-1ESect-6.2 P-2ESect-6.2 P-3ESect-6.2 P-4ESect-6.2 P-5ESect-6.2 P-6ESect-6.2 P-7ESect-6.2 P-8ESect-6.2 P-9ESect-6.2 P-10ESect-6.2 P-11ESect-6.2 P-12ESect-6.2 P-13ESect-6.2 P-14ESect-6.2 P-15ESect-6.2 P-16ESect-6.2 P-17ESect-6.2 P-18ESect-6.2 P-19ESect-6.2 P-20ESect-6.2 P-21ESect-6.2 P-22ESect-6.2 P-23ESect-6.2 P-24ESect-6.2 P-25ESect-6.2 P-26ESect-6.2 P-27ESect-6.2 P-28ESect-6.2 P-29ESect-6.2 P-30ESect-6.2 P-31ESect-6.2 P-32ESect-6.2 P-33ESect-6.2 P-34ESect-6.2 P-35ESect-6.2 P-36ESect-6.2 P-37ESect-6.2 P-38ESect-6.2 P-39ESect-6.2 P-40ESect-6.2 P-41ESect-6.2 P-42ESect-6.2 P-43ESect-6.2 P-44ESect-6.2 P-45ESect-6.2 P-46ESect-6.2 P-47ESect-6.2 P-48ESect-6.2 P-49ESect-6.3 P-1ESect-6.3 P-2ESect-6.3 P-3ESect-6.3 P-4ESect-6.3 P-5ESect-6.3 P-6ESect-6.3 P-7ESect-6.3 P-8ESect-6.3 P-9ESect-6.3 P-10ESect-6.3 P-11ESect-6.3 P-12ESect-6.3 P-13ESect-6.3 P-14ESect-6.3 P-15ESect-6.3 P-16ESect-6.3 P-17ESect-6.3 P-18ESect-6.3 P-19ESect-6.3 P-20ESect-6.3 P-21ESect-6.3 P-22ESect-6.3 P-23ESect-6.3 P-24ESect-6.3 P-25ESect-6.3 P-26ESect-6.3 P-27ESect-6.3 P-28ESect-6.3 P-29ESect-6.3 P-30ESect-6.3 P-31ESect-6.3 P-32ESect-6.3 P-33ESect-6.3 P-34ESect-6.3 P-35ESect-6.3 P-36ESect-6.3 P-37ESect-6.3 P-38ESect-6.3 P-39ESect-6.3 P-40ESect-6.3 P-41ESect-6.3 P-42ESect-6.3 P-43ESect-6.3 P-44ESect-6.3 P-45ESect-6.3 P-46ESect-6.3 P-47ESect-6.3 P-48ESect-6.4 P-1ESect-6.4 P-2ESect-6.4 P-3ESect-6.4 P-4ESect-6.4 P-5ESect-6.4 P-6ESect-6.4 P-7ESect-6.4 P-8ESect-6.4 P-9ESect-6.4 P-10ESect-6.4 P-11ESect-6.4 P-12ESect-6.4 P-13ESect-6.4 P-14ESect-6.4 P-15ESect-6.4 P-16ESect-6.4 P-17ESect-6.4 P-18ESect-6.4 P-19ESect-6.4 P-20ESect-6.4 P-21ESect-6.4 P-22ESect-6.4 P-23ESect-6.4 P-24ESect-6.4 P-25ESect-6.4 P-26ESect-6.4 P-27ESect-6.4 P-28ESect-6.4 P-29ESect-6.4 P-30ESect-6.4 P-31ESect-6.4 P-32ESect-6.4 P-33ESect-6.4 P-34ESect-6.4 P-35ESect-6.4 P-36ESect-6.4 P-37ESect-6.4 P-38ESect-6.4 P-39ESect-6.CR P-1CRSect-6.CR P-2CRSect-6.CR P-3CRSect-6.CR P-4CRSect-6.CR P-5CRSect-6.CR P-6CRSect-6.CR P-7CRSect-6.CR P-8CRSect-6.CR P-9CRSect-6.CR P-10CRSect-6.CR P-11CRSect-6.CR P-12CRSect-6.CR P-13CRSect-6.CR P-14CRSect-6.CR P-15CRSect-6.CR P-16CRSect-6.CR P-17CRSect-6.CR P-18CRSect-6.CR P-19CRSect-6.CR P-20CRSect-6.CR P-21CRSect-6.CR P-22CRSect-6.CR P-23CRSect-6.CR P-24CRSect-6.CR P-25CRSect-6.CR P-26CRSect-6.CR P-27CRSect-6.CR P-28CRSect-6.CR P-29CRSect-6.CR P-30CRSect-6.CR P-31CRSect-6.CR P-32CRSect-6.CR P-33CRSect-6.CR P-34CRSect-6.CR P-35CRSect-6.CT P-1CTSect-6.CT P-2CTSect-6.CT P-3CTSect-6.CT P-4CTSect-6.CT P-5CTSect-6.CT P-6CTSect-6.CT P-7CTSect-6.CT P-8CTSect-6.CT P-9CTSect-6.CT P-10CTSect-6.CT P-11CTSect-6.CT P-12CTSect-6.CT P-13CTSect-6.CT P-14CTSect-6.CT P-15CTSect-6.CT P-16CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 15-22, use the laws of logarithms to solve the equation. log5(2x+1)log5(x2)=1

Finite Mathematics for the Managerial, Life, and Social Sciences

Polynomial Inequalities Solve the inequality. 16. x2(7 6x) 1

Precalculus: Mathematics for Calculus (Standalone Book)

In Exercises 1124, find the indicated limits, if they exist. 15. limx2x+3x29

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Finding an Indefinite Integral In Exercises 45-54, find the indefinite integral. coshxsinhxdx

Calculus: Early Transcendental Functions (MindTap Course List)

Evaluate the integrals in Problems 1-32. 29.

Mathematical Applications for the Management, Life, and Social Sciences

The length of the curve given by x = 3t2 + 2, y = 2t3, is:

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: converges conditionally.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Find all real solutions of each equation. x+19x2=3

College Algebra (MindTap Course List)