BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

In 4—10 assume that B is a Boolean algebra with operations + and •. Prove each statement using only the axioms for a Boolean algebra and statements proved in the text or in lower-numbered exercises.

8. De Morgan’s law for •: For all a and b in B, a b ¯ = a ¯ + b ¯ . (Hint: Prove that ( a b ) + ( a ¯ + b ¯ ) = 1 and that ( a b ) + ( a ¯ + b ¯ ) = 0 , and use the fact that has a unique complement.)

To determine

To Prove:

For all a and b in B,a.b¯=a¯+b¯.

Explanation

Given information:

Let B be the Boolean algebra, with the operations, addition "+" and multiplication ".".

Concept used:

a¯+a=a+a¯     by the commutative law=1            by the complement law for 1

And

a¯a=aa¯     by the commutative law=0            by the complement law for 0

Calculation:

Let B be the Boolean algebra, with the operations, addition "+" and multiplication ""

Suppose a and b are any elements of B.

Then, a¯ is the complement of a and b¯ is the complement of b.

The uniqueness of the complement law tells that, for all a and x in B if,

a+x=1a.x=0x=a¯

To show that a.b¯=a¯+b¯, it is enough to show that (a.b)+(a¯+b¯)=1 and,

(a.b).(a¯+b¯)=0 Then use the uniqueness of complement law.

Prove (a.b).(a¯+b¯)=1

(a.b)+(a¯+b¯)=(a¯+b¯)+(a.b) By the Commutative law for addition "+"

=((a¯+b¯)+a).((a¯+b¯)+b) By the Distributive law for addition "+"

Over multiplication "."

=((b¯+a¯)+a).((a¯+b¯)+b) By the Commutative law for addition "+"

=(b¯+(a¯+a)).(a¯+(b¯+b)) By the Associative law for addition "+"

=(b¯+(a+a¯))

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-6.1 P-11TYSect-6.1 P-1ESSect-6.1 P-2ESSect-6.1 P-3ESSect-6.1 P-4ESSect-6.1 P-5ESSect-6.1 P-6ESSect-6.1 P-7ESSect-6.1 P-8ESSect-6.1 P-9ESSect-6.1 P-10ESSect-6.1 P-11ESSect-6.1 P-12ESSect-6.1 P-13ESSect-6.1 P-14ESSect-6.1 P-15ESSect-6.1 P-16ESSect-6.1 P-17ESSect-6.1 P-18ESSect-6.1 P-19ESSect-6.1 P-20ESSect-6.1 P-21ESSect-6.1 P-22ESSect-6.1 P-23ESSect-6.1 P-24ESSect-6.1 P-25ESSect-6.1 P-26ESSect-6.1 P-27ESSect-6.1 P-28ESSect-6.1 P-29ESSect-6.1 P-30ESSect-6.1 P-31ESSect-6.1 P-32ESSect-6.1 P-33ESSect-6.1 P-34ESSect-6.1 P-35ESSect-6.1 P-36ESSect-6.1 P-37ESSect-6.1 P-38ESSect-6.2 P-1TYSect-6.2 P-2TYSect-6.2 P-3TYSect-6.2 P-4TYSect-6.2 P-5TYSect-6.2 P-6TYSect-6.2 P-1ESSect-6.2 P-2ESSect-6.2 P-3ESSect-6.2 P-4ESSect-6.2 P-5ESSect-6.2 P-6ESSect-6.2 P-7ESSect-6.2 P-8ESSect-6.2 P-9ESSect-6.2 P-10ESSect-6.2 P-11ESSect-6.2 P-12ESSect-6.2 P-13ESSect-6.2 P-14ESSect-6.2 P-15ESSect-6.2 P-16ESSect-6.2 P-17ESSect-6.2 P-18ESSect-6.2 P-19ESSect-6.2 P-20ESSect-6.2 P-21ESSect-6.2 P-22ESSect-6.2 P-23ESSect-6.2 P-24ESSect-6.2 P-25ESSect-6.2 P-26ESSect-6.2 P-27ESSect-6.2 P-28ESSect-6.2 P-29ESSect-6.2 P-30ESSect-6.2 P-31ESSect-6.2 P-32ESSect-6.2 P-33ESSect-6.2 P-34ESSect-6.2 P-35ESSect-6.2 P-36ESSect-6.2 P-37ESSect-6.2 P-38ESSect-6.2 P-39ESSect-6.2 P-40ESSect-6.2 P-41ESSect-6.2 P-42ESSect-6.2 P-43ESSect-6.2 P-44ESSect-6.3 P-1TYSect-6.3 P-2TYSect-6.3 P-3TYSect-6.3 P-1ESSect-6.3 P-2ESSect-6.3 P-3ESSect-6.3 P-4ESSect-6.3 P-5ESSect-6.3 P-6ESSect-6.3 P-7ESSect-6.3 P-8ESSect-6.3 P-9ESSect-6.3 P-10ESSect-6.3 P-11ESSect-6.3 P-12ESSect-6.3 P-13ESSect-6.3 P-14ESSect-6.3 P-15ESSect-6.3 P-16ESSect-6.3 P-17ESSect-6.3 P-18ESSect-6.3 P-19ESSect-6.3 P-20ESSect-6.3 P-21ESSect-6.3 P-22ESSect-6.3 P-23ESSect-6.3 P-24ESSect-6.3 P-25ESSect-6.3 P-26ESSect-6.3 P-27ESSect-6.3 P-28ESSect-6.3 P-29ESSect-6.3 P-30ESSect-6.3 P-31ESSect-6.3 P-32ESSect-6.3 P-33ESSect-6.3 P-34ESSect-6.3 P-35ESSect-6.3 P-36ESSect-6.3 P-37ESSect-6.3 P-38ESSect-6.3 P-39ESSect-6.3 P-40ESSect-6.3 P-41ESSect-6.3 P-42ESSect-6.3 P-43ESSect-6.3 P-44ESSect-6.3 P-45ESSect-6.3 P-46ESSect-6.3 P-47ESSect-6.3 P-48ESSect-6.3 P-49ESSect-6.3 P-50ESSect-6.3 P-51ESSect-6.3 P-52ESSect-6.3 P-53ESSect-6.3 P-54ESSect-6.4 P-1TYSect-6.4 P-2TYSect-6.4 P-3TYSect-6.4 P-1ESSect-6.4 P-2ESSect-6.4 P-3ESSect-6.4 P-4ESSect-6.4 P-5ESSect-6.4 P-6ESSect-6.4 P-7ESSect-6.4 P-8ESSect-6.4 P-9ESSect-6.4 P-10ESSect-6.4 P-11ESSect-6.4 P-12ESSect-6.4 P-13ESSect-6.4 P-14ESSect-6.4 P-15ESSect-6.4 P-16ESSect-6.4 P-17ESSect-6.4 P-18ESSect-6.4 P-19ESSect-6.4 P-20ESSect-6.4 P-21ESSect-6.4 P-22ESSect-6.4 P-23ESSect-6.4 P-24ESSect-6.4 P-25ESSect-6.4 P-26ESSect-6.4 P-27ESSect-6.4 P-28ESSect-6.4 P-29ES