Computer Systems: A Programmer's Perspective (3rd Edition)
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
Expert Solution & Answer
Book Icon
Chapter 6.6, Problem 6.21PP

Explanation of Solution

Estimating time in CPU cycles:

It is given that the sustained throughput using large strides from L1 is: 12,000 MB/s.

Clock frequency= 2,100 MHz

Individual read accesses= 8-byte long

Hence, one can estimate that it takes roughly   210012000×8=1

Blurred answer
Students have asked these similar questions
1. We wish to compare the performance of two different machines: M1 and M2. The following measurements have been made on these machines:   Program Time on M1 Time on M2 1 10 seconds 5 seconds 2 3 seconds 4 seconds Which machine is faster for each program, and by how much?   2. For M1 and M2 of problem 1, the following additional measurements are made:. Find the instruction execution rate (instructions per second) for each machine when running program 1.   Program Instructions executed on M1 Instructions executed on M2 1 200 x 106 160 x 106   3. For M1 and M2 of problem 1, if the clock rates are 200 MHz and 300 MHz, respectively, find the CPI for program 1 on both machines using the data provided in problems 1 and 2.   4. You are going to enhance a machine, and there are two possible improvements: either make multiply instructions run four times faster than before or make memory access instructions run two times faster than before. You…
1. Develop a mathematical model for measuring performance based on overall memory access time with a neat diagram for the following memory design and derive the formula to calculate the Overall Memory Access Time. Main Memory : 1 Internal Cache : 1 External Cache: 1 Register S and Register B have fastest access time: Data Search order [ Registers – Internal Cache – External Cache – Memory] [Hint: Register access time is considered negligible]
4.19.16: [5] <COD §4.6>. In this exercise, we examine how pipelining affects the clock cycle time of the processor. Problems in this exercise assume that individual stages of the datapath have the following latencies:   Also, assume that instructions executed by the processor are broken down as follows: (a) What is the clock cycle time in a pipelined and non-pipelined processor? (b) What is the total latency of an lw instruction in a pipelined and non-pipelined processor? (c) If we can split one stage of the pipelined datapath into two new stages, each with half the latency of the original stage, which stage would you split and what is the new clock cycle time of the processor? (d) Assuming there are no stalls or hazards, what is the utilization of the data memory? (e) Assuming there are no stalls or hazards, what is the utilization of the write-register port of the "Registers" unit?    No hand written and fast answer with explanation
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr