   Chapter 7, Problem 49GQ

Chapter
Section
Textbook Problem

The magnet in the following photo is made from neodymium, iron, and boron. A magnet mode of on alloy containing the elements Nd, Fe, and B. (a) Write the electron configuration of each of these elements using an orbital box diagram and noble gas notation. (b) Are these elements paramagnetic or diamagnetic? (c) Write the electron configurations of Nd3+ and Fe3+ using orbital box diagrams and noble gas notation. Are these ions paramagnetic or diamagnetic?

a)

Interpretation Introduction

Interpretation:

The electron configuration of Neodymium, iron, and boron has to be written using orbital box diagram.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

Explanation

The electron configuration of Neodymium (Nd) element:

The orbital box diagram as follows,

AtomicnumberofNeodymium (Nd)=60Complete (spdf)notationof(Nd)=1s22s22p63s23p63d104s24p64d105s25p64f46s2Orbital filling method=1s22s22p63s23p63d104s24p64d85s25p64f46s2spdfwith noble gas notation=[Xe] 4f46s2[AtomicnumberofXe=54]Orbitalboxnotation       = [Xe]4f46s2

Hence, the Noble gas configuration of [Xe] 4f46s2

b)

Interpretation Introduction

Interpretation:

The magnetic property for the elements neodymium, iron, and Boron has to be predicted.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

c)

Interpretation Introduction

Interpretation:

The electron configuration of Nd3+ and Fe3+ using orbital box diagram and its paramagnetic property has to be predicted.

Concept Introduction:

Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.

Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.

Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.

Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.

Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.

Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Find more solutions based on key concepts 