CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
14th Edition
ISBN: 9781259327933
Author: Burdge
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.31QP

List the types of intermolecular forces that exist between molecules (or atoms or ions) in each of the following species: (a) benzene (C6H6), (b) CH3Cl, (c) PF3, (d) NaCl, (e) CS2.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The intermolecular forces presented in the given moleculesbenzene (C6H6), CH3Cl, PF3, NaCl and CS2 are to be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Ionicforces: ions are attracted each otherelectrostatically.

Answer to Problem 7.31QP

Dispersion forces are present inbenzene (C6H6).

Explanation of Solution

To determine: intermolecular forces presented inbenzene (C6H6)..

Dispersion forces are present inbenzene (C6H6).

In the benzene (C6H6) molecule,

There are C-C bonds and C-H bonds presented in benzene (C6H6) molecule. Carbon atom has more electronegativity as compared to hydrogen; so all the C-H bonds in benzene (C6H6) have polarities.

The result of all the bond polarities are the sum of all the vectors associated with each bonds.

The directions of C-H bond vectors are opposite to each other, so they cancel each other.

Hence,

The vector sum or the result of bond polarities for benzene (C6H6) molecule is zero, so benzene (C6H6) is a nonpolar molecule.

Since the benzene (C6H6) is a nonpolar molecule, it exhibit only one type of intermolecular force, which is dispersion forces.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The intermolecular forces presented in the given moleculesbenzene (C6H6), CH3Cl, PF3, NaCl and CS2 are to be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Ionicforces: ions are attracted each otherelectrostatically.

Answer to Problem 7.31QP

Dispersion forces and dipole-dipole interaction are present in CH3Cl.

Explanation of Solution

To determine: intermolecular forces presented in CH3Cl.

Dispersion forces and dipole-dipole interaction are present in CH3Cl.

The C-H bond and C-Cl bond in the CH3Cl molecule has bond polarity. So CH3Cl molecule is a polar molecule.

Polar molecules exhibit dipole-dipole interactions.

Therefore,

Dispersion forces and dipole-dipole interaction are present in CH3Cl.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The intermolecular forces presented in the given molecules benzene (C6H6), CH3Cl, PF3, NaCl and CS2 are to be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Ionicforces: ions are attracted each otherelectrostatically.

Answer to Problem 7.31QP

Dispersion forces and dipole-dipole interaction are present in PF3.

Explanation of Solution

To determine: intermolecular forces presented in PF3.

Dispersion forces and dipole-dipole interaction are present in PF3.

The P-F bond in the PF3 molecule has bond polarity. So PF3 molecule is a polar molecule.

Polar molecules exhibit dipole-dipole interactions.

Therefore,

Dispersion forces and dipole-dipole interaction are present in PF3.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The intermolecular forces presented in the given molecules benzene (C6H6), CH3Cl, PF3, NaCl and CS2 are to be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Ionicforces: ions are attracted each otherelectrostatically.

Answer to Problem 7.31QP

Ionic forces are present in NaCl

Explanation of Solution

To determine: intermolecular forces presented in NaCl.

Ionic forces are present in NaCl

NaCl is an ionic compound, in which Na+ and Cl ions are electrostatically attracted each other.

Therefore,

Ionic forces are present in NaCl prevalently.

(e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The intermolecular forces presented in the given molecules benzene (C6H6), CH3Cl, PF3, NaCl and CS2 are to be determined.

Concept introduction:

  • Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
  • If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
  • If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
  • Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
  • Dipole – Dipole interaction: This force takes place between polar compounds.
  • Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
  • Dispersion force is a weak force and this force is present in all compounds force.
  • Ionicforces: ions are attracted each otherelectrostatically.

Answer to Problem 7.31QP

Dispersion forces are present in CS2

Explanation of Solution

To determine: intermolecular forces presented in CS2.

Dispersion forces are present in CS2

In CS2 molecule,

There are two C-S presented in CS2 molecule. Sulfur atom has more electronegativity as compared to carbon atom; so all the bonds in CS2 have polarities.

The result of all the bond polarities are the sum of all the vectors associated with each bonds.

The directions of C-S bond vectors are opposite to each other, so they cancel each other.

Hence,

The vector sum or the result of bond polarities for CS2 molecule is zero, so CS2 is a non-polar molecule.

Therefore,

Only dispersion forces are present in CS2.

Conclusion

Conclusion

The intermolecular forces presented in the given molecules benzene (C6H6), CH3Cl, PF3, NaCl and CS2 are determined according to the polarities of molecules.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the hypothetical cyclic square hydrogen molecular di-cation (H42+), list all electrostatic pairwise interactions including their signs and contributions to stabilising and de-stabilising the molecular structure
#7# Polar or non polar ? For CF2CL2
2(a) Provide the Lewis structures for both CH3OH and C2H3Cl. 2(b) What is the largest bond angle among all the bond angles in CH3OH and C2H3Cl? Listthe three atoms making this largest bond angle, and estimate the value of the angle.2(c) What intermolecular forces are present(i) between CH3OH molecules?(ii) between C2H3Cl molecules?

Chapter 7 Solutions

CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT

Ch. 7.1 - Prob. 7.1.3SRCh. 7.1 - Prob. 7.1.4SRCh. 7.2 - Prob. 7.3WECh. 7.2 - Prob. 3PPACh. 7.2 - For each of the following hypothetical molecules,...Ch. 7.2 - Which of these models could represent a polar...Ch. 7.2 - Prob. 7.2.1SRCh. 7.2 - Prob. 7.2.2SRCh. 7.3 - Prob. 7.4WECh. 7.3 - Prob. 4PPACh. 7.3 - Prob. 4PPBCh. 7.3 - Prob. 4PPCCh. 7.3 - Prob. 7.3.1SRCh. 7.3 - Prob. 7.3.2SRCh. 7.4 - Hydrogen selenide (H2Se) is a foul-smelling gas...Ch. 7.4 - Prob. 5PPACh. 7.4 - For which molecule(s) can we not use valence bond...Ch. 7.4 - Which of these models could represent a species...Ch. 7.4 - Prob. 7.4.1SRCh. 7.4 - Prob. 7.4.2SRCh. 7.5 - Prob. 7.6WECh. 7.5 - Use hybrid orbital theory to describe the bonding...Ch. 7.5 - Prob. 6PPBCh. 7.5 - Prob. 6PPCCh. 7.5 - Prob. 7.5.1SRCh. 7.5 - Prob. 7.5.2SRCh. 7.6 - Thalidomide (C13H10N2O4) is a sedative and...Ch. 7.6 - The active ingredient in Tylenol and a host of...Ch. 7.6 - Determine the total number of sigma and pi bonds...Ch. 7.6 - In terms of valence bond theory and hybrid...Ch. 7.6 - In addition to its rise in aqueous solution as a...Ch. 7.6 - Use valence bond theory and hybrid orbitals to...Ch. 7.6 - Use valence bond theory and hybrid orbitals to...Ch. 7.6 - Explain why hybrid orbitals are necessary to...Ch. 7.6 - Prob. 7.6.1SRCh. 7.6 - Prob. 7.6.2SRCh. 7.6 - Prob. 7.6.3SRCh. 7.6 - Prob. 7.6.4SRCh. 7.7 - Prob. 7.9WECh. 7.7 - Use molecular orbital theory to determine whether...Ch. 7.7 - Use molecular orbital theory to determine whether...Ch. 7.7 - For most of the homonuclear diatomic species shown...Ch. 7.7 - Prob. 7.7.1SRCh. 7.7 - Prob. 7.7.2SRCh. 7.7 - Prob. 7.7.3SRCh. 7.7 - Prob. 7.7.4SRCh. 7.8 - It takes three resonance structures to represent...Ch. 7.8 - Use a combination of valence bond theory and...Ch. 7.8 - Use a combination of valence bond theory and...Ch. 7.8 - Prob. 10PPCCh. 7.8 - Prob. 7.8.1SRCh. 7.8 - Prob. 7.8.2SRCh. 7.8 - Prob. 7.8.3SRCh. 7.8 - Prob. 7.8.4SRCh. 7 - Prob. 7.1QPCh. 7 - Sketch the shape of a linear triatomic molecule, a...Ch. 7 - Prob. 7.3QPCh. 7 - Prob. 7.4QPCh. 7 - In the trigonal bipyramidal arrangement, why does...Ch. 7 - Prob. 7.6QPCh. 7 - Predict the geometry of the following molecules...Ch. 7 - Prob. 7.8QPCh. 7 - Predict the geometries of the following species...Ch. 7 - Predict the geometries of the following ions: (a)...Ch. 7 - Prob. 7.11QPCh. 7 - Prob. 7.12QPCh. 7 - Prob. 7.13QPCh. 7 - Describe the geometry about each of the central...Ch. 7 - Prob. 7.15QPCh. 7 - Prob. 7.16QPCh. 7 - Prob. 7.17QPCh. 7 - Prob. 7.18QPCh. 7 - Prob. 7.19QPCh. 7 - Prob. 7.20QPCh. 7 - Prob. 7.21QPCh. 7 - Prob. 7.22QPCh. 7 - Explain the term polarizability. What kind of...Ch. 7 - Prob. 7.24QPCh. 7 - What physical properties are determined by the...Ch. 7 - Prob. 7.26QPCh. 7 - Describe the types of intermolecular forces that...Ch. 7 - The compounds Br2 and ICl are isoelectronic (have...Ch. 7 - If you lived in Alaska, which of the following...Ch. 7 - The binary hydrogen compounds of the Group 4A...Ch. 7 - List the types of intermolecular forces that exist...Ch. 7 - Prob. 7.32QPCh. 7 - Prob. 7.33QPCh. 7 - Prob. 7.34QPCh. 7 - Diethyl ether has a boiling point of 34.5C, and...Ch. 7 - Prob. 7.36QPCh. 7 - Which substance in each of the following pairs...Ch. 7 - Prob. 7.38QPCh. 7 - What kind of attractive forces must be overcome to...Ch. 7 - Prob. 7.40QPCh. 7 - Prob. 7.41QPCh. 7 - The following compounds have the same molecular...Ch. 7 - Prob. 7.43QPCh. 7 - Prob. 7.44QPCh. 7 - Use valence bond theory to explain the bonding in...Ch. 7 - Prob. 7.46QPCh. 7 - Prob. 7.47QPCh. 7 - Prob. 7.48QPCh. 7 - Prob. 7.49QPCh. 7 - What is the hybridization of atomic orbitals? Why...Ch. 7 - Prob. 7.51QPCh. 7 - Prob. 7.52QPCh. 7 - Prob. 7.53QPCh. 7 - Describe the bonding scheme of the AsH3 molecule...Ch. 7 - Prob. 7.55QPCh. 7 - Prob. 7.56QPCh. 7 - Describe the hybridization of phosphorus in PF5.Ch. 7 - Prob. 7.58QPCh. 7 - Prob. 7.59QPCh. 7 - Prob. 7.1VCCh. 7 - Prob. 7.2VCCh. 7 - Prob. 7.3VCCh. 7 - Prob. 7.4VCCh. 7 - Prob. 7.60QPCh. 7 - Which of the following pairs of atomic orbitals of...Ch. 7 - Prob. 7.62QPCh. 7 - Prob. 7.63QPCh. 7 - Prob. 7.64QPCh. 7 - Prob. 7.65QPCh. 7 - Prob. 7.66QPCh. 7 - Prob. 7.67QPCh. 7 - Prob. 7.68QPCh. 7 - Benzo[a]pyrene is a potent carcinogen found in...Ch. 7 - What is molecular orbital theory? How does it...Ch. 7 - Define the following terms: bonding molecular...Ch. 7 - Prob. 7.72QPCh. 7 - Prob. 7.73QPCh. 7 - Prob. 7.74QPCh. 7 - Prob. 7.75QPCh. 7 - Draw a molecular orbital energy level diagram for...Ch. 7 - Prob. 7.77QPCh. 7 - Prob. 7.78QPCh. 7 - Prob. 7.79QPCh. 7 - Acetylene (C2H2) has a tendency to lose two...Ch. 7 - Compare the Lewis and molecular orbital treatments...Ch. 7 - Prob. 7.82QPCh. 7 - Prob. 7.83QPCh. 7 - Prob. 7.84QPCh. 7 - Prob. 7.85QPCh. 7 - Draw the molecular orbital diagram for the cyanide...Ch. 7 - Given that BeO is diamagnetic, use a molecular...Ch. 7 - Prob. 7.88QPCh. 7 - Prob. 7.89QPCh. 7 - Both ethylene (C2H4) and benzene (C6H6) contain...Ch. 7 - Chemists often represent benzene with the...Ch. 7 - Determine which of these molecules has a more...Ch. 7 - Nitryl fluoride (FNO2) is used in rocket...Ch. 7 - Describe the bonding in the nitrate ion NO3 in...Ch. 7 - Prob. 7.95QPCh. 7 - Prob. 7.96QPCh. 7 - Prob. 7.97QPCh. 7 - Prob. 7.98QPCh. 7 - Prob. 7.99QPCh. 7 - Antimony pentafluoride (SbF5) combines with XeF4...Ch. 7 - Prob. 7.101QPCh. 7 - The molecular model of nicotine (a stimulant) is...Ch. 7 - Predict the bond angles for the following...Ch. 7 - The germanium pentafluoride anion (GeF5) has been...Ch. 7 - Draw Lewis structures and give the other...Ch. 7 - Which figure best illustrates the hybridization of...Ch. 7 - Prob. 7.107QPCh. 7 - Prob. 7.108QPCh. 7 - Prob. 7.109QPCh. 7 - Prob. 7.110QPCh. 7 - Prob. 7.111QPCh. 7 - Cyclopropane (C3H6) has the shape of a triangle in...Ch. 7 - The compound 1,2-dichloroethane (C2H4Cl2) is...Ch. 7 - Prob. 7.114QPCh. 7 - Prob. 7.115QPCh. 7 - Prob. 7.116QPCh. 7 - Prob. 7.117QPCh. 7 - Prob. 7.118QPCh. 7 - The amino acid selenocysteine is one of the...Ch. 7 - Prob. 7.120QPCh. 7 - Prob. 7.121QPCh. 7 - Prob. 7.122QPCh. 7 - Gaseous or highly volatile liquid anesthetics are...Ch. 7 - Prob. 7.124QPCh. 7 - Prob. 7.125QPCh. 7 - Two of the drugs that are prescribed for the...Ch. 7 - Prob. 7.127QPCh. 7 - Prob. 7.128QPCh. 7 - The BO+ ion is paramagnetic. Determine (a) whether...Ch. 7 - Use molecular orbital theory to explain the...Ch. 7 - Which best illustrates the change in geometry...Ch. 7 - Prob. 7.132QPCh. 7 - Prob. 7.133QPCh. 7 - Aluminum trichloride (AlCl3) is an...Ch. 7 - Prob. 7.135QPCh. 7 - Prob. 7.136QPCh. 7 - Prob. 7.137QPCh. 7 - Consider an N2 molecule in its first excited...Ch. 7 - The Lewis structure for O2 is Use molecular...Ch. 7 - Draw the Lewis structure of ketene (C2H2O) and...Ch. 7 - The compound TCDD, or...Ch. 7 - Name the kinds of attractive forces that must be...Ch. 7 - Carbon monoxide (CO) is a poisonous compound due...Ch. 7 - Prob. 7.144QPCh. 7 - Prob. 7.145QPCh. 7 - Prob. 7.146QPCh. 7 - Prob. 7.147QPCh. 7 - Prob. 7.148QPCh. 7 - Prob. 7.1KSPCh. 7 - Which of the following species does not have...Ch. 7 - Prob. 7.3KSPCh. 7 - Prob. 7.4KSP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY