BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
20 views

Find the lengths of the apothem and the radius of a square whose sides have length 10 in.

To determine

To find:

The lengths of the apothem and the radius of a square.

Explanation

Approach:

1) Any radius of a regular polygon bisects the angle at the vertex to which it is drawn.

2) Any apothem of a regular polygon bisects the side of the polygon to which it is drawn.

Calculation:

Consider a square ABCD with OA as radius and OE as apothem.

It is given that the side of the square ABCD is 10 in. i.e., AB = BC = CD = DA = 10 in.

All the angles of a square are of 90° i.e., A=B=C=D=90.

Any radius of a regular polygon bisects the angle at the vertex to which it is drawn.

Therefore, ODE=45

Now, ΔODE is a 45°-45°-90° triangle.

Any apothem of a regular polygon bisects the side of the polygon to which it is drawn.

Therefore, ED = EC

Now, DC = DE + EC

10=DE+DE10=2DEDE=5in

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-7.1 P-11ESect-7.1 P-12ESect-7.1 P-13ESect-7.1 P-14ESect-7.1 P-15ESect-7.1 P-16ESect-7.1 P-17ESect-7.1 P-18ESect-7.1 P-19ESect-7.1 P-20ESect-7.1 P-21ESect-7.1 P-22ESect-7.1 P-23ESect-7.1 P-24ESect-7.1 P-25ESect-7.1 P-26ESect-7.1 P-27ESect-7.1 P-28ESect-7.1 P-29ESect-7.1 P-30ESect-7.1 P-31ESect-7.1 P-32ESect-7.1 P-33ESect-7.1 P-34ESect-7.1 P-35ESect-7.1 P-36ESect-7.1 P-37ESect-7.1 P-38ESect-7.1 P-39ESect-7.1 P-40ESect-7.1 P-41ESect-7.1 P-42ESect-7.1 P-43ESect-7.1 P-44ESect-7.1 P-45ESect-7.1 P-46ESect-7.2 P-1ESect-7.2 P-2ESect-7.2 P-3ESect-7.2 P-4ESect-7.2 P-5ESect-7.2 P-6ESect-7.2 P-7ESect-7.2 P-8ESect-7.2 P-9ESect-7.2 P-10ESect-7.2 P-11ESect-7.2 P-12ESect-7.2 P-13ESect-7.2 P-14ESect-7.2 P-15ESect-7.2 P-16ESect-7.2 P-17ESect-7.2 P-18ESect-7.2 P-19ESect-7.2 P-20ESect-7.2 P-21ESect-7.2 P-22ESect-7.2 P-23ESect-7.2 P-24ESect-7.2 P-25ESect-7.2 P-26ESect-7.2 P-27ESect-7.2 P-28ESect-7.2 P-29ESect-7.2 P-30ESect-7.2 P-31ESect-7.2 P-32ESect-7.2 P-33ESect-7.2 P-34ESect-7.2 P-35ESect-7.2 P-36ESect-7.2 P-37ESect-7.2 P-38ESect-7.2 P-39ESect-7.2 P-40ESect-7.2 P-41ESect-7.2 P-42ESect-7.2 P-43ESect-7.2 P-44ESect-7.3 P-1ESect-7.3 P-2ESect-7.3 P-3ESect-7.3 P-4ESect-7.3 P-5ESect-7.3 P-6ESect-7.3 P-7ESect-7.3 P-8ESect-7.3 P-9ESect-7.3 P-10ESect-7.3 P-11ESect-7.3 P-12ESect-7.3 P-13ESect-7.3 P-14ESect-7.3 P-15ESect-7.3 P-16ESect-7.3 P-17ESect-7.3 P-18ESect-7.3 P-19ESect-7.3 P-20ESect-7.3 P-21ESect-7.3 P-22ESect-7.3 P-23ESect-7.3 P-24ESect-7.3 P-25ESect-7.3 P-26ESect-7.3 P-27ESect-7.3 P-28ESect-7.3 P-29ESect-7.3 P-30ESect-7.3 P-31ESect-7.3 P-32ESect-7.3 P-33ESect-7.3 P-34ESect-7.3 P-35ESect-7.3 P-36ESect-7.CR P-1CRSect-7.CR P-2CRSect-7.CR P-3CRSect-7.CR P-4CRSect-7.CR P-5CRSect-7.CR P-6CRSect-7.CR P-7CRSect-7.CR P-8CRSect-7.CR P-9CRSect-7.CR P-10CRSect-7.CR P-11CRSect-7.CR P-12CRSect-7.CR P-13CRSect-7.CR P-14CRSect-7.CR P-15CRSect-7.CR P-16CRSect-7.CR P-17CRSect-7.CR P-18CRSect-7.CR P-19CRSect-7.CR P-20CRSect-7.CR P-21CRSect-7.CR P-22CRSect-7.CR P-23CRSect-7.CR P-24CRSect-7.CR P-25CRSect-7.CR P-26CRSect-7.CR P-27CRSect-7.CR P-28CRSect-7.CR P-29CRSect-7.CR P-30CRSect-7.CR P-31CRSect-7.CR P-32CRSect-7.CR P-33CRSect-7.CR P-34CRSect-7.CT P-1CTSect-7.CT P-2CTSect-7.CT P-3CTSect-7.CT P-4CTSect-7.CT P-5CTSect-7.CT P-6CTSect-7.CT P-7CTSect-7.CT P-8CTSect-7.CT P-9CTSect-7.CT P-10CTSect-7.CT P-11CTSect-7.CT P-12CTSect-7.CT P-13CTSect-7.CT P-14CTSect-7.CT P-15CTSect-7.CT P-16CTSect-7.CT P-17CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

PHOTOSYNTHESIS The rate of production R in photosynthesis is related to the light intensity I by the function R...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Fill in each blank: 120ft=yd

Elementary Technical Mathematics

Finding Derivatives In Exercises 51-62, find f(x). f(x)=4x33x2+2x+5x2

Calculus: An Applied Approach (MindTap Course List)

Prove Formula 1 of Theorem 3.

Calculus (MindTap Course List)

If sin=1a with in QI, find cos,csc, and cot.

Trigonometry (MindTap Course List)

In Exercises 1-10, determine which of the matrices are stochastic. [13141213012143412]

Finite Mathematics for the Managerial, Life, and Social Sciences

Rewritten as an iterated integral in polar coordinates,

Study Guide for Stewart's Multivariable Calculus, 8th

A mosquito population of 100 grows to 500 after two weeks. If the population follows an exponential growth mode...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th