
The cobweb tent (ExH). Take a square in which the diagonal and an inverted V are drawn. Start at any point on the diagonal. From there, everything else is determined. Go vertically up or down as needed to head toward the inverted V. When you hit the inverted V, go horizontally right or left until you hit the diagonal. From there repeat the pattern going vertically until you hit the inverted V and then horizontally until you hit the diagonal. Repeal Following this pattern creates the cobweb plot you have seen before (see Mindscape 30 on page 539-541 in the previous section for a full description of cobweb plots). Look at the following examples. These cobweb plots are the result of a repeated process, and they illustrate many of the ideas from this section. Mindscapes 6-18 all refer to this process. You can also produce these graphs using a program on the Heart of Mathematics Web site-the images are really cool!
Staircase. Start at the point marked on the diagonal at the left, and draw the first four iterates of the cobweb plot. Use a straightedge and be as careful as possible to keep your lines vertical and horizontal.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
The Heart of Mathematics: An Invitation to Effective Thinking
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Calculus: Early Transcendentals (2nd Edition)
College Algebra (7th Edition)
Probability And Statistical Inference (10th Edition)
Elementary Statistics
University Calculus: Early Transcendentals (4th Edition)
- Good Day, assist me with plotting the following. I've already calculated the System Average Interruption Duration Index and System Average Interruption Frequency Index. using this data Create time series plots form the reliability metrics SAIDI and SAIFI along with thetrend lines based on the linear regression SAIDI(MINUTES) SAIFI(Interruptions) 2.58 0.045 2.94 0.056 2.32 0.056 3.21 0.177 2.78 0.180 2.72 0.121 2.44 0.119 3.19 0.175 2.21 0.065 2.30 0.135 3.49 0.128 3.60 0.112 2.15 0.104 3.75 0.055 3.12 0.036 2.85 0.123 2.62 0.173 3.08 0.047 1.92 0.040 2.94 0.147arrow_forwardSolve the integral.thanksarrow_forwardFind the antiderivative for each function when C equals 0. Check your answers by differentiation. 2 (a) h(x) = 3x - 1 3 2 - 4 dy+, - 3 3 (c) k(x) = X (b) g(x) = 3x (a) H(x) = (b) G(x) = (c) K(x) =arrow_forward
- find integral of curves dx/(x + y) = dy/(x + y) = dz/−(x + y + 2z)arrow_forwardConsider the integral X -dx with n = 4. a. Find the trapezoid rule approximations to the integral using n and 2n subintervals. b. Find the Simpson's rule approximation to the integral using 2n subintervals. c. Compute the absolute errors in the trapezoid rule and Simpson's rule with 2n subintervals. a. What is the trapezoid approximation with n subintervals? T(4)=(Round to six decimal places as needed.) What is the trapezoid approximation with 2n subintervals? T(8) = (Round to six decimal places as needed.) b. What is the Simpson's rule approximation with 2n subintervals? S(8)=(Round to six decimal places as needed.) c. What is the error in the trapezoid rule approximation with 2n subintervals? (Round to six decimal places as needed.) What is the error in the Simpson's rule approximation with 2n subintervals? (Round to six decimal places as needed.)arrow_forward00 fe Suppose that the probability that a particular computer chip fails after t = a hours of operation is 0.00004 0.00004 dt. a a. Find the probability that the computer chip fails after 16.000 hr of operation (that is, the chip lasts at least 16,000 hr). b. Of the chips that are still in operation after 16,000 hr, what fraction of these will operate for at least another 16,000 hr? c. Evaluate 0.00004 Se -0.000041 dt and interpret its meaning. a. The probability that the chip fails after 16,000 hr of operation is (Round to three decimal places as needed.) b. The fraction that will still be operating for at least another 16.000 hr is (Round to three decimal places as needed.) c. Choose the correct answer below. OA. The probability that the chip never fails is 0.00004 -0.00004t dt= OB. The probability that the chip eventually fails is 0.00004 S 0.00004 dt = dt= -0.000041 dt= OC. The probability that the chip fails immediately is 0.00004 OD. There is not enough information to interpret…arrow_forward
- Find the volume of the described solid of revolution or state that it does not exist. The region bounded by f(x) = (x-5) and the x-axis on the interval (5,7] is revolved about the x-axis. Find the volume or state that it does not exist. Select the correct answer and, if necessary, fill in the box to complete your choice. OA. The volume is cubic units. (Type an exact answer.) OB. The volume does not exist.arrow_forwardUse the reduction formulas in a table of integrals to evaluate Sx³e 3 18x dx. Click here to view basic integrals. Click here to view trigonometric integrals. Click here to view √x³e 18x dx = ☐arrow_forwardEvaluate the following integral using trigonometric substitution. 2√√3 x² √16-x - dx What substitution will be the most helpful for evaluating this integral? A. x=4 sec 0 OB. x=4 sin 0 OC. x=4 tan 0 Rewrite the given integral using this substitution. 2√√3 X 2 dx= de 0 √16-x (Type exact answers.) Evaluate the integral. 2√3 0 2 x² √16-x 2 dx = (Type an exact answer.)arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning




