Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
Fundamentals of Chemical Engineering Thermodynamics (MindTap Course List)
1st Edition
ISBN: 9781111580704
Author: Kevin D. Dahm, Donald P. Visco
Publisher: Cengage Learning
Question
Book Icon
Chapter 7.7, Problem 25P

(A)

Interpretation Introduction

Interpretation:

The rate at which the work is done

Concept Introduction:

Write the molar entropy equation for a reversible, steady-state, adiabatic turbine.

S_2S_1=0

Here, final molar entropy of the fluid leaving the turbine is S_2, and initial molar entropy of the fluid entering the turbine is S_1.

Write the expression to calculate the Lee Kesler correlation residuals entropy.

S_2S_1=(S_2S_2ig)+(S_2igS_1ig)(S_1S_1ig)

Here, final molar entropy for an ideal gas state is S_2ig, and initial molar enthalpy for an ideal gas state is S_1ig.

Write the expression to calculate the reduced temperature (Tr1) for initial condition.

Tr1=TTc

Here, critical temperature is Tc, and temperature is T.

Write the expression to calculate the reduced pressure (Pr1) for initial condition.

Pr1=PPc

Here, critical pressure is Pc, and pressure is P.

Calculate parameter S_2igS_1ig.

S_2igS_1ig=CVTdT+RV_dV_=T1T2CVTdT+RlnV_2V_1=T1T2CP*RTdT+Rln(RT2/P2RT1/P1)=T1T2CP*RTdT+Rln(P1T2P2T1)

Here, constant volume heat capacity on a molar basis for ideal gas is CV*, change in temperature is dT, molar volume is V_, final and initial molar volume is V_2andV_1 respectively, final temperature is T2, initial temperature is T1, and change in molar volume is dV_.

Write the energy balance for a reversible turbine.

W˙S,revη˙=H_2H_1

Here, rate of shaft work for reversible turbine is W˙S,rev, net efficiency is η˙, and final and initial molar enthalpies are H_2andH_1 respectively.

Write the expression to calculate the Lee Kesler correlation residuals enthalpy.

H_2H_1=(H_2H_2ig)+(H_2igH_1ig)(H_1H_1ig)

Here, final molar enthalpy is H_2, initial molar enthalpy is H_1, final molar enthalpy for an ideal gas state is H_2ig, and initial molar enthalpy for an ideal gas state is H_1ig.

(A)

Expert Solution
Check Mark

Explanation of Solution

Given information:

n-butane.

Flow rate five moles per second.

Inlet pressure is 15 bar and temperature is 500 K.

Final pressure is 1 bar.

Isentropic efficiency is 80%.

Refer the Appendix table C 1, “Physical properties”, obtain the critical properties of butane.

Critical temperature, Tc=425.12K

Critical pressure, Pc=37.96bar

Acentric factor, ω=0.2

Calculate the reduced temperature (Tr1) for initial condition.

Tr1=TTc        (1)

Substitute 500K for T and 425.12K for Tc in Equation (1).

Tr1=500K425.12K=1.18

Calculate the reduced pressure (Pr1) for initial condition.

Pr1=PPc        (2)

Substitute 15bar for T and 37.96bar for Pc in Equation (2).

Pr1=15bar37.96bar=0.40

Refer the Figure 7-18, “Molar entropy residual function for a compound with ω=0, as determined using the Lee-Kesler equation”, obtain the value of (S_1S_1ig)0 corresponding to Pr.

(S_1S_1ig)0=0.2

Refer the Figure 7-19, “Correction to molar entropy residual function for a compound with ω=1, as determined using the Lee-Kesler equation”, obtain the value of (S_1S_1ig)1 corresponding to Pr.

(S_1S_1ig)1=0.1

Calculate parameter S_1S_1ig.

S_1S_1ig=R[(S_1S_1ig)0+ω(S_1S_1ig)1]        (3)

Substitute 8.314J/molK for R, 0.2 for (S_1S_1ig)0, 0.1 for (S_1S_1ig)1, and 0.2 for ω in Equation (3).

S_1S_1ig=R[(S_1S_1ig)0+ω(S_1S_1ig)1]=8.314J/molK[(0.2)+(0.2)(0.1)]=1.8J/molK

Calculate the Lee Kesler correlation residuals entropy.

S_2S_1=(S_2S_2ig)+(S_2igS_1ig)(S_1S_1ig)        (4)

Re-write the Equation (4).

S_2S_1=(S_2igS_1ig)(S_1S_1ig)        (5)

Substitute 0 for S_2S_1 and 1.8J/molK for S_1S_1ig in Equation (5)

S_2S_1=(S_2igS_1ig)(S_1S_1ig)0=(S_2igS_1ig)(1.8J/molK)S_2igS_1ig=1.8J/molK

Refer the Appendix D, “Heat capacity”; obtain the ideal gas heat capacity of a compound as a function of temperature.

CP*R=A+BT+CT2+DT3+ET4CP*=R[A+BT+CT2+DT3+ET4]

Here, constants are A, B, C, D, and E.

Calculate parameter S_2igS_1ig.

S_2igS_1ig=T1T2CP*RTdT+Rln(P1T2P2T1)        (6)

Substitute R[A+BT+CT2+DT3+ET4] for CP* in Equation (6).

S_2igS_1ig=T1T2(A1)+BT+CT2+DT3+ET4TdT+Rln(P1T2P2T1)={R[(A1)lnT2T1+B(T2T1)+C(T22T12)2+D(T23T13)3+E(T24T14)4]+Rln(P1T2P2T1)}        (7)

Refer the appendix table D.1, “Ideal Gas Heat Capacity”, obtain the constants for the butane.

NameFormulaAB×103C×105D×108E×1011
ButaneC4H105.5475.5368.057–10.5714.134

substitute 1.8J/molK for S_2igS_1ig, 8.314JmolK for R, 500K for T1, 5.547 for A, 5.536×103 for B, 8.057×105 for C, 10.571×108 for D, and 4.134×1011 for E, 15bar for P1, and 1bar for P2 in Equation (7).

1.8J/molK={R[(A1)lnT2T1+B(T2T1)+C(T22T12)2+D(T23T13)3+E(T24T14)4]+Rln(P1T2P2T1)}={8.314[(5.5471)ln500T1+(5.536×103)(T2500)+(8.057×105)(T225002)2+(10.571×108)(T235003)3+(4.134×1011)(T245004)4]+(8.314)ln[(15)T2(1)(500)]}        (8)

Solve Equation (8) to obtain the final temperature:

T2=419.5K

Calculate the Lee Kesler correlation residuals enthalpy.

H_2H_1=(H_2H_2ig)+(H_2igH_1ig)(H_1H_1ig)        (9)

Re-write the Equation (8).

H_2H_1=(H_2igH_1ig)(H_1H_1ig)        (10)

Refer the Figure 7-16, “Molar enthalpy residual function for a compound with ω=0, as determined using the Lee-Kesler equation”, obtain the value of [H_H_igRTc]0 corresponding to Tr1andPr1.

[H_H_igRTc]0=0.3

Refer the Figure 7-17, “Correction to the molar enthalpy residual function for a compound with ω=1, as determined using the Lee-Kesler equation”, obtain the value of [H_H_igRTc]1 corresponding to Tr1andPr1.

[H_H_igRTc]1=0.1

Calculate parameter H_1H_1igRTc.

H_1H_1ig=RTc{[H_H_igRTc]0+ω[H_H_igRTc]1}        (11)

Substitute 8.314J/molK for R, 425.12K for Tc, 0.3 for [H_H_igRTc]0, 0.1 for [H_H_igRTc]1, and 0.2 for ω in Equation (11).

H_1H_1ig=RTc{[H_H_igRTc]0+ω[H_H_igRTc]1}=(8.314J/molK)(425.12K){(0.3)+0.2(0.1)}=1,131J/mol

Calculate parameter H_2igH_1ig.

H_2igH_1ig=T1T2CPdT        (12)

Substitute R[A+BT+CT2+DT3+ET4] for CP* in Equation (12).

H_2igH_1ig=T1T2R[A+BT+CT2+DT3+ET4]dT=RT1T2[A+BT+CT2+DT3+ET4]dT        (13)

substitute 8.314JmolK for R, 500K for T1, 419.5K for T2, 5.547 for A, 5.536×103 for B, 8.057×105 for C, 10.571×108 for D, and 4.134×1011 for E, in Equation (13).

H_2igH_1ig=8.314JmolK[5.547[(419.5500)K]+5.536×103[(419.5500)K]22+8.057×105[(419.5500)K]33+10.571×108[(419.5500)K]44+4.134×1011[(419.5500)K]55[(419.5500)K]]H_2igH_1ig=11,170J/mol

Substitute 11,170J/mol for H_2igH_1ig, and 1,131J/mol for H_1H_1ig in Equation (10).

H_2H_1=(H_2igH_1ig)(H_1H_1ig)=(11,170J/mol)(1,131J/mol)=10,039J/mol(0.001kJ/mol/1J/mol)=10.039kJ/mol

Calculate the actual work is done (W˙s)

W˙s=η(H_2H_1)        (14)

Substitute 80% for η and 10.039kJ/mol for H_2H_1 in Equation (14).

W˙s=80%(10.039kJ/mol)=0.8(10.039kJ/mol)=8.0312kJ/mol

Thus, the rate at which work is done is 8.0312kJ/mol.

(B)

Interpretation Introduction

Interpretation:

The rate at which the work is done

Concept Introduction:

Write the reduced temperature (Tr).

Tr=TTc

Here, critical temperature is Tc and temperature is T.

Write the reduced pressure (Pr).

Pr=PPc

Here, pressure is P.

Write the acentric factor in a manner analogous to Soave’s m.

κ=0.37464+1.54226ω0.26993ω2

Write the α as a function of the reduced temperature.

α=[1+κ(1Tr0.5)]2

Write the Peng-Robinson parameter a at the critical point.

ac=0.45724R2Tc2Pc

Write the van der Waals parameter a.

a=acα

Write the van der Waals parameter b.

b=0.07780RTcPc

Write the Peng-Robinson equation.

P=RTV_baV_(V_+b)+b(V_b)

Here, molar volume is V_, parameters of Robinson equation are a, b, gas constant is R, temperature and pressure is T and P respectively.

Write the compressibility factor.

Z=PV_RT

Write the residual properties of A.

A=aPR2T2

Write the residual properties of B.

B=bPRT

Write the compressibility factor (Z).

Z=V_V_baRT(1V_+b)

Write the expression to calculate the Lee Kesler correlation residuals enthalpy.

H_2H_1=(H_2H_2ig)+(H_2igH_1ig)(H_1H_1ig)

Here, final molar enthalpy is H_2, initial molar enthalpy is H_1, final molar enthalpy for an ideal gas state is H_2ig, and initial molar enthalpy for an ideal gas state is H_1ig.

(B)

Expert Solution
Check Mark

Explanation of Solution

Calculate accentric factor in a manner analogous to Soave’s m.

κ=0.37464+1.54226ω0.26993ω2        (15)

Substitute 0.2 for ω in Equation (15).

κ=0.37464+1.54226(0.2)0.26993(0.2)2=0.6722

Calculate the value of α expressed as a function of the reduced temperature.

α=[1+κ(1Tr0.5)]2        (16)

Substitute 0.6722 for κ and 1.18 for Tr in Equation (16).

α=[1+0.6722(11.180.5)]2=0.88

Calculate the value of parameter a at the critical point.

ac=0.45724R2Tc2Pc        (17)

Substitute 8.314×105m3bar/molK for R, 425.12K for Tc, and 37.96bar for Pc in Equation (17).

ac=0.45724(8.314×105m3bar/molK)2(425.12K)237.96bar=1.504×105m6bar/mol2(1012cm6bar/mol21m6bar/mol2)=1.504×107cm6bar/mol2

Calculate the van der Waals parameter a.

a=acα        (18)

Substitute 0.88 for α, and 1.504×107cm6bar/mol2 for ac in Equation (18).

a=(1.504×107cm6bar/mol2)(0.88)=1.34×107cm6bar/mol2

Calculate the van der Waals parameter b.

b=0.07780RTcPc        (19)

Substitute 8.314×105m3bar/molK for R, 425.12K for Tc, and 37.96bar for Pc in Equation (19).

b=0.07780(8.314×105m3bar/molK)(425.12K)37.96bar=7.24×105m3/mol(106cm3/mol1m3/mol)=72.4cm3/mol

Calculate constant A.

A=aPR2T2        (20)

Substitute 1.34×107cm6bar/mol2 for a, 15bar for P, 8.314×105m3bar/molK for R, and 500K for T in Equation (20).

A=(1.34×107cm6bar/mol2)(15bar)(8.314×105m3bar/molK)2(500K)2=0.116

Calculate constant B.

B=bPRT        (21)

Substitute 72.4cm3/mol for b, 15bar for P, 8.314×105m3bar/molK for R, and 500K for T in Equation (21).

B=(72.4cm3/mol)(15bar)(8.314×105m3bar/molK)(500K)=0.026

Calculate the molar volume (V_).

P=RTV_baV_(V_+b)+b(V_b)        (22)

Substitute 15bar for P, 8.314×105m3bar/molK for R, 500K for T, 1.34×107cm6bar/mol2 for a, and 72.4cm3/mol for b in Equation (22).

15bar=(8.314×105m3bar/molK)(500K)V_72.4cm3/mol1.34×107cm6bar/mol2[V_(V_+72.4cm3/mol)+72.4cm3/mol(V_72.4cm3/mol)]V_=73.52m3/kmol

Calculate the compressibility factor (Z).

Z=V_V_baRT(1V_+b)        (23)

Substitute 73.52m3/kmol for V_, 8.314×105m3bar/molK for R, 500K for T, 1.34×107cm6bar/mol2 for a, and 72.4cm3/mol for b in Equation (23).

Z={73.52m3/kmol73.52m3/kmol72.4cm3/mol1.34×107cm6bar/mol2(8.314×105m3bar/molK)(500K)(173.52m3/kmol+72.4cm3/mol)}=0.901

Calculate parameter H_2igH_1ig.

H_2igH_1ig=T1T2CPdT        (24)

Substitute R[A+BT+CT2+DT3+ET4] for CP* in Equation (24).

H_2igH_1ig=T1T2R[A+BT+CT2+DT3+ET4]dT=RT1T2[A+BT+CT2+DT3+ET4]dT        (25)

substitute 8.314JmolK for R, 500K for T1, 419.5K for T2, 5.547 for A, 5.536×103 for B, 8.057×105 for C, 10.571×108 for D, and 4.134×1011 for E, in Equation (25).

H_2igH_1ig=RT1T2[A+BT+CT2+DT3+ET4]dT8.314JmolK[5.547[(419.5500)K]+5.536×103[(419.5500)K]22+8.057×105[(419.5500)K]33+10.571×108[(419.5500)K]44+4.134×1011[(419.5500)K]55[(419.5500)K]]H_2igH_1ig=11,170J/mol

Refer the Figure 7-16, “Molar enthalpy residual function for a compound with ω=0, as determined using the Lee-Kesler equation”, obtain the value of [H_H_igRTc]0 corresponding to Tr1andPr1.

[H_H_igRTc]0=0.3

Refer the Figure 7-17, “Correction to the molar enthalpy residual function for a compound with ω=1, as determined using the Lee-Kesler equation”, obtain the value of [H_H_igRTc]1 corresponding to Tr1andPr1.

[H_H_igRTc]1=0.3

Calculate the term H_1H_1ig.

H_1H_1ig=RTc{[H_H_igRTc]0+ω[H_H_igRTc]1}        (26)

Substitute 8.314J/molK for R, 425.12K for Tc, 0.3 for [H_H_igRTc]0, 0.3 for [H_H_igRTc]1, and 0.2 for ω in Equation (26).

H_1H_1ig=RTc{[H_H_igRTc]0+ω[H_H_igRTc]1}=(8.314J/molK)(425.12K){(0.3)+0.2(0.3)}=1,272.40J/mol

Calculate the Lee Kesler correlation residuals enthalpy.

H_2H_1=(H_2H_2ig)+(H_2igH_1ig)(H_1H_1ig)        (27)

Re-write the Equation (27).

H_2H_1=(H_2igH_1ig)(H_1H_1ig)        (28)

Substitute 11,170J/mol for H_2igH_1ig, and 1,272.40J/mol for H_1H_1ig in Equation (28).

H_2H_1=(H_2igH_1ig)(H_1H_1ig)=(11,170J/mol)(1,272.40J/mol)=9,897.6J/mol(0.001kJ/mol/1J/mol)=9.897kJ/mol

Calculate the actual work is done (W˙s)

W˙s=η(H_2H_1)        (29)

Substitute 80% for η and 9.897kJ/mol for H_2H_1 in Equation (29).

W˙s=80%(9.897kJ/mol)=0.8(9.897kJ/mol)=7.9kJ/mol

Thus, the rate at which work is done is 7.9kJ/mol.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The