BuyFindarrow_forward

Single Variable Calculus: Early Tr...

8th Edition
James Stewart
ISBN: 9781305270336

Solutions

Chapter
Section
BuyFindarrow_forward

Single Variable Calculus: Early Tr...

8th Edition
James Stewart
ISBN: 9781305270336
Textbook Problem

Use Simpson’s Rule with n = 10 to approximate the area of the surface obtained by rotating the curve about the x-axis. Compare your answer with the value of the integral produced by a calculator.

22. y = x ln x, 1 ≤ x ≤ 2

To determine

To Calculate: the approximate value of the area of the surface obtained by rotating the curve about x-axis using Simpson’s rule.

To compare: the value of the integral produced by the calculator.

Explanation

Given information:

The Equation of the curve is y=xlnx,1x2 .

The number of sub intervals as n=10 .

Calculation:

Show the equation of the curve.

y=xlnx (1)

Calculate the area of the surface obtained by rotating the curve about x-axis using the relation:

S=ab2πy1+(dydx)2dx (2)

Here, S is the area of the surface obtained by rotating the curve about y-axis and

axb .

Differentiate both sides of Equation (1) with respect to x.

dydx=ddx(xlnx)

Show the formula of differentiation.

ddx(uv)=ududx+vdvdx

Apply the formula of differentiation.

dydx=ddx(xlnx)=xd(lnx)dx+lnxdxdx=x(1x)+lnx=1+lnx

Substitute xlnx for y, (1+lnx) for dydx , 1 for a, and 2 for b in Equation (2).

S=012πxex1+(xex+ex)2dx (3)

Consider the function f(x)=2πxlnx1+(1+lnx)2 .

Calculate the length of the subinterval (Δx) using the formula:

Δx=ban

Here, b is upper limit, a is lower limit, and n is number of subintervals.

Substitute 2 for b, 1 for a, and 10 for n.

Δx=2110=110=0.1

Calculate the approximate value of integral by using Simpson’s rule.

Show the Simpson’s rule as follows:

abf(x)dxSn=Δx3[f(x0)+4f(x1)+2f(x2)+4f(x3)...+2f(xn2)+4f(xn1)+f(xn)]

Consider the condition for Simpson rule as follows:

  • Δx=ban
  • Number of subinterval n is even.

Here, Sn is Simpson’s approximation, x1,x2,...xn are subintervals, b is upper limit, a is lower limit, and n is number of subintervals.

Apply Simpson’s rule in Equation (3).

012πxlnx1+(1+lnx)2dxSn=Δx3[f(x0)+4f(x1)+2f(x2)+4f(x3)...+2f(xn2)+4f(xn1)+f(xn)]

Substitute 0

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-8.1 P-11ESect-8.1 P-12ESect-8.1 P-13ESect-8.1 P-14ESect-8.1 P-15ESect-8.1 P-16ESect-8.1 P-17ESect-8.1 P-18ESect-8.1 P-19ESect-8.1 P-20ESect-8.1 P-21ESect-8.1 P-22ESect-8.1 P-23ESect-8.1 P-24ESect-8.1 P-25ESect-8.1 P-26ESect-8.1 P-27ESect-8.1 P-28ESect-8.1 P-29ESect-8.1 P-30ESect-8.1 P-33ESect-8.1 P-34ESect-8.1 P-35ESect-8.1 P-36ESect-8.1 P-37ESect-8.1 P-38ESect-8.1 P-39ESect-8.1 P-40ESect-8.1 P-41ESect-8.1 P-42ESect-8.1 P-43ESect-8.1 P-44ESect-8.1 P-45ESect-8.1 P-46ESect-8.2 P-1ESect-8.2 P-2ESect-8.2 P-3ESect-8.2 P-4ESect-8.2 P-5ESect-8.2 P-6ESect-8.2 P-7ESect-8.2 P-8ESect-8.2 P-9ESect-8.2 P-10ESect-8.2 P-11ESect-8.2 P-12ESect-8.2 P-13ESect-8.2 P-14ESect-8.2 P-15ESect-8.2 P-16ESect-8.2 P-17ESect-8.2 P-18ESect-8.2 P-19ESect-8.2 P-20ESect-8.2 P-21ESect-8.2 P-22ESect-8.2 P-23ESect-8.2 P-24ESect-8.2 P-27ESect-8.2 P-28ESect-8.2 P-29ESect-8.2 P-30ESect-8.2 P-31ESect-8.2 P-32ESect-8.2 P-33ESect-8.2 P-35ESect-8.2 P-36ESect-8.2 P-37ESect-8.2 P-38ESect-8.2 P-39ESect-8.3 P-1ESect-8.3 P-2ESect-8.3 P-3ESect-8.3 P-4ESect-8.3 P-5ESect-8.3 P-6ESect-8.3 P-7ESect-8.3 P-8ESect-8.3 P-9ESect-8.3 P-10ESect-8.3 P-11ESect-8.3 P-12ESect-8.3 P-13ESect-8.3 P-14ESect-8.3 P-15ESect-8.3 P-16ESect-8.3 P-17ESect-8.3 P-18ESect-8.3 P-19ESect-8.3 P-20ESect-8.3 P-21ESect-8.3 P-22ESect-8.3 P-23ESect-8.3 P-24ESect-8.3 P-25ESect-8.3 P-26ESect-8.3 P-27ESect-8.3 P-28ESect-8.3 P-29ESect-8.3 P-30ESect-8.3 P-31ESect-8.3 P-32ESect-8.3 P-33ESect-8.3 P-34ESect-8.3 P-35ESect-8.3 P-36ESect-8.3 P-37ESect-8.3 P-38ESect-8.3 P-39ESect-8.3 P-40ESect-8.3 P-41ESect-8.3 P-42ESect-8.3 P-43ESect-8.3 P-44ESect-8.3 P-45ESect-8.3 P-46ESect-8.3 P-47ESect-8.3 P-48ESect-8.3 P-49ESect-8.3 P-50ESect-8.3 P-51ESect-8.4 P-1ESect-8.4 P-2ESect-8.4 P-3ESect-8.4 P-4ESect-8.4 P-5ESect-8.4 P-6ESect-8.4 P-7ESect-8.4 P-8ESect-8.4 P-9ESect-8.4 P-10ESect-8.4 P-11ESect-8.4 P-12ESect-8.4 P-13ESect-8.4 P-14ESect-8.4 P-15ESect-8.4 P-16ESect-8.4 P-17ESect-8.4 P-18ESect-8.4 P-19ESect-8.4 P-20ESect-8.4 P-21ESect-8.4 P-22ESect-8.4 P-23ESect-8.5 P-1ESect-8.5 P-2ESect-8.5 P-3ESect-8.5 P-4ESect-8.5 P-5ESect-8.5 P-6ESect-8.5 P-7ESect-8.5 P-8ESect-8.5 P-9ESect-8.5 P-10ESect-8.5 P-11ESect-8.5 P-12ESect-8.5 P-13ESect-8.5 P-14ESect-8.5 P-15ESect-8.5 P-16ESect-8.5 P-17ESect-8.5 P-18ESect-8.5 P-19ESect-8.5 P-20ESect-8.5 P-21ECh-8 P-1RCCCh-8 P-2RCCCh-8 P-3RCCCh-8 P-4RCCCh-8 P-5RCCCh-8 P-6RCCCh-8 P-7RCCCh-8 P-8RCCCh-8 P-9RCCCh-8 P-10RCCCh-8 P-1RECh-8 P-2RECh-8 P-3RECh-8 P-4RECh-8 P-5RECh-8 P-6RECh-8 P-7RECh-8 P-8RECh-8 P-9RECh-8 P-10RECh-8 P-11RECh-8 P-12RECh-8 P-13RECh-8 P-14RECh-8 P-15RECh-8 P-16RECh-8 P-17RECh-8 P-18RECh-8 P-19RECh-8 P-20RECh-8 P-21RECh-8 P-22RECh-8 P-23RECh-8 P-1PCh-8 P-2PCh-8 P-3PCh-8 P-4PCh-8 P-5PCh-8 P-6PCh-8 P-7PCh-8 P-8PCh-8 P-9PCh-8 P-10PCh-8 P-11PCh-8 P-12PCh-8 P-13P

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

27r63s2t4

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

If f is continuous on [a, b] show that 2abf(x)f(x)dx=[f(b)]2[f(a)]2

Single Variable Calculus: Early Transcendentals, Volume I

Dimension of a Matrix State the dimension of the matrix. 8. [301]

Precalculus: Mathematics for Calculus (Standalone Book)

Solve each equation and check: 13x+6=6x1

Elementary Technical Mathematics

Convert the following mixed numbers to improper fractions. 1145

Contemporary Mathematics for Business & Consumers

In Problems 21-26, graph each function. 26.

Mathematical Applications for the Management, Life, and Social Sciences

The interval of convergence of is: [−1, 1] [−1, 1) (−1, 1] (−1, 1)

Study Guide for Stewart's Multivariable Calculus, 8th

The instantaneous rate of change of y = x3 + 3x at the point corresponding to x = 2 is: a) 10 b) 15 c) 2 d) 60

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Describe the relationship between the alpha level and the likelihood of making a Type I error.

Research Methods for the Behavioral Sciences (MindTap Course List)