BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

In 9-11, prove each of the given statements, assuming that a , b , c , d , and n are integers with n>1 and that a = c ( mod n ) and b = d ( mod n ) .

a n c = c n s ( mod n ) for every integer m 1 (Use mathematical induction on m.)

To determine

To prove:

The statement amcm(modn) for all integers m1, by using mathematical induction on m.

Explanation

Given information:

Let a,b,c,dandn are integers with n>1 and that ac(modn) and bd(modn).

Formula used:

The binomial expansion is:

(a+b)n=(n0)anb0+(n1)an1b1+(n2)an2b2++(nn)a0bn

Proof:

To prove the statement amcm(modn), by using mathematical induction on m.

In the above statement, a,candn are integers with n>1.

It is given that, ac(modn) and bd(modn).

Thus, there exist integers sandt such that a=c+sn and b=d+tn.

For m=1 ,

Substitute 1 for m in equation amcm(modn).

ac(modn)

Thus, the statement is true for m=1.

Let the statement amcm(modn) is true for m=k.

akck(modn)

To prove the above statement for n=k+1.

ak+1=aka

Substitute c+sn for a in the above equation.

aka=(c+sn)k(c+sn)

Use the binomial expansion in the above equation.

(c+sn)k(c+sn)=[( k 0 )ck( sn)0+( k 1 )ck1( sn)1+( k 2 )ck2( sn)2++( k k )ckk( sn)k](c+sn)=[( k 0 )ck+( k 1 )ck1( sn)1+( k 2 )ck2( sn)2++( k k )( sn)k](c+sn)=[ck+kck1( sn)1+k( k1)2ck2( sn)2++( sn)k](c+sn)

Simplify the above equation

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-8.1 P-6ESSect-8.1 P-7ESSect-8.1 P-8ESSect-8.1 P-9ESSect-8.1 P-10ESSect-8.1 P-11ESSect-8.1 P-12ESSect-8.1 P-13ESSect-8.1 P-14ESSect-8.1 P-15ESSect-8.1 P-16ESSect-8.1 P-17ESSect-8.1 P-18ESSect-8.1 P-19ESSect-8.1 P-20ESSect-8.1 P-21ESSect-8.1 P-22ESSect-8.1 P-23ESSect-8.1 P-24ESSect-8.2 P-1TYSect-8.2 P-2TYSect-8.2 P-3TYSect-8.2 P-4TYSect-8.2 P-5TYSect-8.2 P-6TYSect-8.2 P-7TYSect-8.2 P-8TYSect-8.2 P-9TYSect-8.2 P-10TYSect-8.2 P-1ESSect-8.2 P-2ESSect-8.2 P-3ESSect-8.2 P-4ESSect-8.2 P-5ESSect-8.2 P-6ESSect-8.2 P-7ESSect-8.2 P-8ESSect-8.2 P-9ESSect-8.2 P-10ESSect-8.2 P-11ESSect-8.2 P-12ESSect-8.2 P-13ESSect-8.2 P-14ESSect-8.2 P-15ESSect-8.2 P-16ESSect-8.2 P-17ESSect-8.2 P-18ESSect-8.2 P-19ESSect-8.2 P-20ESSect-8.2 P-21ESSect-8.2 P-22ESSect-8.2 P-23ESSect-8.2 P-24ESSect-8.2 P-25ESSect-8.2 P-26ESSect-8.2 P-27ESSect-8.2 P-28ESSect-8.2 P-29ESSect-8.2 P-30ESSect-8.2 P-31ESSect-8.2 P-32ESSect-8.2 P-33ESSect-8.2 P-34ESSect-8.2 P-35ESSect-8.2 P-36ESSect-8.2 P-37ESSect-8.2 P-38ESSect-8.2 P-39ESSect-8.2 P-40ESSect-8.2 P-41ESSect-8.2 P-42ESSect-8.2 P-43ESSect-8.2 P-44ESSect-8.2 P-45ESSect-8.2 P-46ESSect-8.2 P-47ESSect-8.2 P-48ESSect-8.2 P-49ESSect-8.2 P-50ESSect-8.2 P-51ESSect-8.2 P-52ESSect-8.2 P-53ESSect-8.2 P-54ESSect-8.2 P-55ESSect-8.2 P-56ESSect-8.3 P-1TYSect-8.3 P-2TYSect-8.3 P-3TYSect-8.3 P-4TYSect-8.3 P-5TYSect-8.3 P-6TYSect-8.3 P-1ESSect-8.3 P-2ESSect-8.3 P-3ESSect-8.3 P-4ESSect-8.3 P-5ESSect-8.3 P-6ESSect-8.3 P-7ESSect-8.3 P-8ESSect-8.3 P-9ESSect-8.3 P-10ESSect-8.3 P-11ESSect-8.3 P-12ESSect-8.3 P-13ESSect-8.3 P-14ESSect-8.3 P-15ESSect-8.3 P-16ESSect-8.3 P-17ESSect-8.3 P-18ESSect-8.3 P-19ESSect-8.3 P-20ESSect-8.3 P-21ESSect-8.3 P-22ESSect-8.3 P-23ESSect-8.3 P-24ESSect-8.3 P-25ESSect-8.3 P-26ESSect-8.3 P-27ESSect-8.3 P-28ESSect-8.3 P-29ESSect-8.3 P-30ESSect-8.3 P-31ESSect-8.3 P-32ESSect-8.3 P-33ESSect-8.3 P-34ESSect-8.3 P-35ESSect-8.3 P-36ESSect-8.3 P-37ESSect-8.3 P-38ESSect-8.3 P-39ESSect-8.3 P-40ESSect-8.3 P-41ESSect-8.3 P-42ESSect-8.3 P-43ESSect-8.3 P-44ESSect-8.3 P-45ESSect-8.3 P-46ESSect-8.3 P-47ESSect-8.4 P-1TYSect-8.4 P-2TYSect-8.4 P-3TYSect-8.4 P-4TYSect-8.4 P-5TYSect-8.4 P-6TYSect-8.4 P-7TYSect-8.4 P-8TYSect-8.4 P-9TYSect-8.4 P-10TYSect-8.4 P-1ESSect-8.4 P-2ESSect-8.4 P-3ESSect-8.4 P-4ESSect-8.4 P-5ESSect-8.4 P-6ESSect-8.4 P-7ESSect-8.4 P-8ESSect-8.4 P-9ESSect-8.4 P-10ESSect-8.4 P-11ESSect-8.4 P-12ESSect-8.4 P-13ESSect-8.4 P-14ESSect-8.4 P-15ESSect-8.4 P-16ESSect-8.4 P-17ESSect-8.4 P-18ESSect-8.4 P-19ESSect-8.4 P-20ESSect-8.4 P-21ESSect-8.4 P-22ESSect-8.4 P-23ESSect-8.4 P-24ESSect-8.4 P-25ESSect-8.4 P-26ESSect-8.4 P-27ESSect-8.4 P-28ESSect-8.4 P-29ESSect-8.4 P-30ESSect-8.4 P-31ESSect-8.4 P-32ESSect-8.4 P-33ESSect-8.4 P-34ESSect-8.4 P-35ESSect-8.4 P-36ESSect-8.4 P-37ESSect-8.4 P-38ESSect-8.4 P-39ESSect-8.4 P-40ESSect-8.4 P-41ESSect-8.4 P-42ESSect-8.4 P-43ESSect-8.5 P-1TYSect-8.5 P-2TYSect-8.5 P-3TYSect-8.5 P-4TYSect-8.5 P-5TYSect-8.5 P-6TYSect-8.5 P-7TYSect-8.5 P-8TYSect-8.5 P-9TYSect-8.5 P-10TYSect-8.5 P-1ESSect-8.5 P-2ESSect-8.5 P-3ESSect-8.5 P-4ESSect-8.5 P-5ESSect-8.5 P-6ESSect-8.5 P-7ESSect-8.5 P-8ESSect-8.5 P-9ESSect-8.5 P-10ESSect-8.5 P-11ESSect-8.5 P-12ESSect-8.5 P-13ESSect-8.5 P-14ESSect-8.5 P-15ESSect-8.5 P-16ESSect-8.5 P-17ESSect-8.5 P-18ESSect-8.5 P-19ESSect-8.5 P-20ESSect-8.5 P-21ESSect-8.5 P-22ESSect-8.5 P-23ESSect-8.5 P-24ESSect-8.5 P-25ESSect-8.5 P-26ESSect-8.5 P-27ESSect-8.5 P-28ESSect-8.5 P-29ESSect-8.5 P-30ESSect-8.5 P-31ESSect-8.5 P-32ESSect-8.5 P-33ESSect-8.5 P-34ESSect-8.5 P-35ESSect-8.5 P-36ESSect-8.5 P-37ESSect-8.5 P-38ESSect-8.5 P-39ESSect-8.5 P-40ESSect-8.5 P-41ESSect-8.5 P-42ESSect-8.5 P-43ESSect-8.5 P-44ESSect-8.5 P-45ESSect-8.5 P-46ESSect-8.5 P-47ESSect-8.5 P-48ESSect-8.5 P-49ESSect-8.5 P-50ESSect-8.5 P-51ES