Given information:
The given cipher text is “51 14 49 15”.
Formula used:
Division algorithm:
Let a be an integer and d be a positive integer. Then, there are unique integers q and r with 0≤r<d such that a=dq+r, here, q is the quotient and r is the remainder.
So, q=a div d and r=amodd.
Know that the technique is xm(mody)=[x(mody)]m(mody).
RSA Cipher Work:
The formula of the RSA cryptography is M=Cdmodpq.
To decrypt the numbers, use the formula M=Cdmodpq .
…… (1)
Where, d=27 and pq=55.
To decrypt 51, use the formula (1).
M=5127mod55
Its known that, 27 as a sum of powers of 2.
27=24+23+21+20=16+8+2+1
Rewrite the statement as:
M=51( 16+8+2+1)mod55=( 51 16⋅ 518⋅ 512⋅ 511)mod55=( 51 16mod55⋅ 518mod55⋅ 512mod55⋅ 511mod55)mod55=( 51 16mod55⋅ ( 51 4 )2mod55⋅2601mod55⋅51)mod55=( 51 16mod55⋅ ( 51 4 mod55 )2mod55⋅16⋅51)mod55
Simplify the above equation.
( 51 16mod55⋅ ( 51 4 mod55 )2mod55⋅16⋅51)mod55=( 51 16mod55⋅ ( ( 51 2 ) 2 mod55 )2mod55⋅16⋅51)mod55=( 51 16mod55⋅ ( ( 51 2 mod55 ) 2 mod55 )2mod55⋅16⋅51)mod55=( 51 16mod55⋅ ( 16 2 mod55 )2mod55⋅16⋅51)mod55=( ( 51 8 )2mod55⋅ 362mod55⋅16⋅51)mod55
Again, simplify the above equation.
( ( 51 8 )2mod55⋅ 362mod55⋅16⋅51)mod55=( 312mod55⋅31⋅16⋅51)mod55=(961mod55⋅31⋅16⋅51)mod55=(26⋅31⋅16⋅51)mod55=657696mod55=6
Thus, 5127mod55=6.
To decrypt 14, use the formula (1).
M=1427mod55
Its known that, 27 as a sum of powers of 2.
27=24+23+21+20=16+8+2+1
Rewrite the statement as:
M=14( 16+8+2+1)mod55=( 14 16⋅ 148⋅ 142⋅ 141)mod55=( 14 16mod55⋅ 148mod55⋅ 142mod55⋅ 141mod55)mod55=( 14 16mod55⋅ ( 14 4 )2mod55⋅196mod55⋅14)mod55=( 14 16mod55⋅ ( 14 4 mod55 )2mod55⋅31⋅14)mod55
Simplify the above equation.
( 14 16mod55⋅ ( 14 4 mod55 )2mod55⋅31⋅14)mod55=( 14 16mod55⋅ ( ( 14 2 ) 2 mod55 )2mod55⋅31⋅14)mod55=( 14 16mod55⋅ ( ( 14 2 mod55 ) 2 mod55 )2mod55⋅31⋅14)mod55=( 14 16mod55⋅ ( 31 2 mod55 )2mod55⋅31⋅14)mod55=( ( 14 8 )2mod55⋅ 262mod55⋅31⋅14)mod55
Again, simplify the above equation.
( ( 14 8 )2mod55⋅ 262mod55⋅31⋅14)mod55=( 162mod55⋅16⋅31⋅14)mod55=(256mod55⋅16⋅31⋅14)mod55=(36⋅16⋅31⋅14)mod55=249984mod55=9
Thus, 1427mod55=9