   Chapter 8.4, Problem 4TY ### Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

#### Solutions

Chapter
Section ### Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

# If a, n, and k are positive integers with n > 1 , an efficient way to compute a k ( mod   n ) is on write k as a ______and use the facts about computing products and powers modulo n.

To determine

To fill in the blanks of the statement “If a,nandk are positive integers with n>1, an efficient way to compute ak(modn) is to write k as a ________ and use the facts about computing products and powers modulo n .”

Explanation

Given:

The statement “If a,nandk are positive integers with n>1, an efficient way to compute ak(modn) is to write k as a ________ and use the facts about computing products and powers modulo n .”

When computing ak(modn), we write k as a sum of powers of 2 which makes them easier to work with

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 