BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
2 views

Consider the “divides” relation defined on the set A = { 1 , 2 , 2 , 2 , .....2 n } , where n is a nonnegative integer.

  1. Prove that this relation is a total order relation on A.

  • Draw the Hasse diagram for this relation for n = 4.
  • To determine

    (a)

    To Prove:

    The “divides | ” relation is a total order relation on given set:

    A={1,2,22,23,......,2n}.

    Explanation

    Given information:

    A={1,2,22,23,......,2n}

    Concept used:

    If given set is reflexive, antisymmetric and transitive then the given set is called of partial order.

    Proof:

    | Is reflexive: suppose aA. Then a=1a and 1=A so a|a.

    | Is antisymmetric: For a,bA suppose a|b & b|a. Then there exist two integers k1,k2A such that b=k1a,a=k2b.

    b=k1a=k1k2b

    Since b0,k1k2=1 and hence k1=k2=±1.

    Since a,bA,a,b are two positive integers k1k2>0.

    Then k1=k2=1A

    Therefore, a=b

    | Is transitive: For a,b,cA suppose that a|b,b|c

    To determine

    (b)

    To draw:

    The Hasse diagram for this relation for n=4.

    Still sussing out bartleby?

    Check out a sample textbook solution.

    See a sample solution

    The Solution to Your Study Problems

    Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

    Get Started
    Sect-8.1 P-6ESSect-8.1 P-7ESSect-8.1 P-8ESSect-8.1 P-9ESSect-8.1 P-10ESSect-8.1 P-11ESSect-8.1 P-12ESSect-8.1 P-13ESSect-8.1 P-14ESSect-8.1 P-15ESSect-8.1 P-16ESSect-8.1 P-17ESSect-8.1 P-18ESSect-8.1 P-19ESSect-8.1 P-20ESSect-8.1 P-21ESSect-8.1 P-22ESSect-8.1 P-23ESSect-8.1 P-24ESSect-8.2 P-1TYSect-8.2 P-2TYSect-8.2 P-3TYSect-8.2 P-4TYSect-8.2 P-5TYSect-8.2 P-6TYSect-8.2 P-7TYSect-8.2 P-8TYSect-8.2 P-9TYSect-8.2 P-10TYSect-8.2 P-1ESSect-8.2 P-2ESSect-8.2 P-3ESSect-8.2 P-4ESSect-8.2 P-5ESSect-8.2 P-6ESSect-8.2 P-7ESSect-8.2 P-8ESSect-8.2 P-9ESSect-8.2 P-10ESSect-8.2 P-11ESSect-8.2 P-12ESSect-8.2 P-13ESSect-8.2 P-14ESSect-8.2 P-15ESSect-8.2 P-16ESSect-8.2 P-17ESSect-8.2 P-18ESSect-8.2 P-19ESSect-8.2 P-20ESSect-8.2 P-21ESSect-8.2 P-22ESSect-8.2 P-23ESSect-8.2 P-24ESSect-8.2 P-25ESSect-8.2 P-26ESSect-8.2 P-27ESSect-8.2 P-28ESSect-8.2 P-29ESSect-8.2 P-30ESSect-8.2 P-31ESSect-8.2 P-32ESSect-8.2 P-33ESSect-8.2 P-34ESSect-8.2 P-35ESSect-8.2 P-36ESSect-8.2 P-37ESSect-8.2 P-38ESSect-8.2 P-39ESSect-8.2 P-40ESSect-8.2 P-41ESSect-8.2 P-42ESSect-8.2 P-43ESSect-8.2 P-44ESSect-8.2 P-45ESSect-8.2 P-46ESSect-8.2 P-47ESSect-8.2 P-48ESSect-8.2 P-49ESSect-8.2 P-50ESSect-8.2 P-51ESSect-8.2 P-52ESSect-8.2 P-53ESSect-8.2 P-54ESSect-8.2 P-55ESSect-8.2 P-56ESSect-8.3 P-1TYSect-8.3 P-2TYSect-8.3 P-3TYSect-8.3 P-4TYSect-8.3 P-5TYSect-8.3 P-6TYSect-8.3 P-1ESSect-8.3 P-2ESSect-8.3 P-3ESSect-8.3 P-4ESSect-8.3 P-5ESSect-8.3 P-6ESSect-8.3 P-7ESSect-8.3 P-8ESSect-8.3 P-9ESSect-8.3 P-10ESSect-8.3 P-11ESSect-8.3 P-12ESSect-8.3 P-13ESSect-8.3 P-14ESSect-8.3 P-15ESSect-8.3 P-16ESSect-8.3 P-17ESSect-8.3 P-18ESSect-8.3 P-19ESSect-8.3 P-20ESSect-8.3 P-21ESSect-8.3 P-22ESSect-8.3 P-23ESSect-8.3 P-24ESSect-8.3 P-25ESSect-8.3 P-26ESSect-8.3 P-27ESSect-8.3 P-28ESSect-8.3 P-29ESSect-8.3 P-30ESSect-8.3 P-31ESSect-8.3 P-32ESSect-8.3 P-33ESSect-8.3 P-34ESSect-8.3 P-35ESSect-8.3 P-36ESSect-8.3 P-37ESSect-8.3 P-38ESSect-8.3 P-39ESSect-8.3 P-40ESSect-8.3 P-41ESSect-8.3 P-42ESSect-8.3 P-43ESSect-8.3 P-44ESSect-8.3 P-45ESSect-8.3 P-46ESSect-8.3 P-47ESSect-8.4 P-1TYSect-8.4 P-2TYSect-8.4 P-3TYSect-8.4 P-4TYSect-8.4 P-5TYSect-8.4 P-6TYSect-8.4 P-7TYSect-8.4 P-8TYSect-8.4 P-9TYSect-8.4 P-10TYSect-8.4 P-1ESSect-8.4 P-2ESSect-8.4 P-3ESSect-8.4 P-4ESSect-8.4 P-5ESSect-8.4 P-6ESSect-8.4 P-7ESSect-8.4 P-8ESSect-8.4 P-9ESSect-8.4 P-10ESSect-8.4 P-11ESSect-8.4 P-12ESSect-8.4 P-13ESSect-8.4 P-14ESSect-8.4 P-15ESSect-8.4 P-16ESSect-8.4 P-17ESSect-8.4 P-18ESSect-8.4 P-19ESSect-8.4 P-20ESSect-8.4 P-21ESSect-8.4 P-22ESSect-8.4 P-23ESSect-8.4 P-24ESSect-8.4 P-25ESSect-8.4 P-26ESSect-8.4 P-27ESSect-8.4 P-28ESSect-8.4 P-29ESSect-8.4 P-30ESSect-8.4 P-31ESSect-8.4 P-32ESSect-8.4 P-33ESSect-8.4 P-34ESSect-8.4 P-35ESSect-8.4 P-36ESSect-8.4 P-37ESSect-8.4 P-38ESSect-8.4 P-39ESSect-8.4 P-40ESSect-8.4 P-41ESSect-8.4 P-42ESSect-8.4 P-43ESSect-8.5 P-1TYSect-8.5 P-2TYSect-8.5 P-3TYSect-8.5 P-4TYSect-8.5 P-5TYSect-8.5 P-6TYSect-8.5 P-7TYSect-8.5 P-8TYSect-8.5 P-9TYSect-8.5 P-10TYSect-8.5 P-1ESSect-8.5 P-2ESSect-8.5 P-3ESSect-8.5 P-4ESSect-8.5 P-5ESSect-8.5 P-6ESSect-8.5 P-7ESSect-8.5 P-8ESSect-8.5 P-9ESSect-8.5 P-10ESSect-8.5 P-11ESSect-8.5 P-12ESSect-8.5 P-13ESSect-8.5 P-14ESSect-8.5 P-15ESSect-8.5 P-16ESSect-8.5 P-17ESSect-8.5 P-18ESSect-8.5 P-19ESSect-8.5 P-20ESSect-8.5 P-21ESSect-8.5 P-22ESSect-8.5 P-23ESSect-8.5 P-24ESSect-8.5 P-25ESSect-8.5 P-26ESSect-8.5 P-27ESSect-8.5 P-28ESSect-8.5 P-29ESSect-8.5 P-30ESSect-8.5 P-31ESSect-8.5 P-32ESSect-8.5 P-33ESSect-8.5 P-34ESSect-8.5 P-35ESSect-8.5 P-36ESSect-8.5 P-37ESSect-8.5 P-38ESSect-8.5 P-39ESSect-8.5 P-40ESSect-8.5 P-41ESSect-8.5 P-42ESSect-8.5 P-43ESSect-8.5 P-44ESSect-8.5 P-45ESSect-8.5 P-46ESSect-8.5 P-47ESSect-8.5 P-48ESSect-8.5 P-49ESSect-8.5 P-50ESSect-8.5 P-51ES