Biochemistry
Biochemistry
6th Edition
ISBN: 9781305577206
Author: Reginald H. Garrett, Charles M. Grisham
Publisher: Cengage Learning
bartleby

Videos

Question
Chapter 9, Problem 22P
Interpretation Introduction

Interpretation:

The reason for the given behavior of light-driven conformation that changes promote transmembrane proton transport is to be stated. The way by which a conformation change facilitates the proton transport in molecular terms is to be stated.

Concept introduction:

The process of transferring the protons against thermodynamic potential by the action of light is known as proton transfer that is caused by light.

Bacteriorhodopsin is known light-driven ion-pumping rhodopsins. The transfer of proton from the intracellular region to extracellular region takes place with the help of bacteriorhodopsin.

Blurred answer
Knowledge Booster
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
  • Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Quantitative Relationships Between Rate Constants to Calculate Km, Kinetic Efficiency (kcat/Km) and Vmax - I Measurement of the rate constants for a simple enzymatic reaction obeying Michaelis-Menten kinetics gave the following results: k1=2108M1sec1k1=1103sec1k2=5103sec1a. What is Ks, the dissociation constant for the enzyme-substrate complex? b. What is Km, the Michaelis constant for this enzyme? c. What is kcat (the turnover number) for this enzyme? d. What is the catalytic efficiency (kcat/Km) for this enzyme? e. Does this enzyme approach kinetic perfection? (That is, does kcat/Km approach the diffusion-controlled rate of enzyme association with substrate?) f. If a kinetic measurement was made using 2 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? g. Again, using 2 nanomoles of enzyme per mL of reaction mixture, what concentration of substrate would give v = 0.75 Vmax? h. If a kinetic measurement was made using 4 nanomoles of enzyme per mL and saturating amounts of substrate, what would Vmax equal? What would Km equal under these conditions?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Describe the secondary structure of each subdomain of malonyl-CoA: ACP transferase Explain the difference between parallel and antiparallel beta sheets.
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Determining the Branch Points and Reducing Ends of Amylopectin A 0.2-g sample of amylopectin was analyzed to determine the fraction of the total glucose residues, that are branch points in the structure. The sample was exhaustively methylated and then digested, yielding 50-mol of 2,3-dimethylgluetose and 0.4 mol of 1,2,3,6- letramethylglucose. What fraction of the total residues are branch points? I low many reducing ends does this sample of amylopectin have?
  • Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. One Way Negative Cooperatively Might Make Metabolic Sense Allosteric enzymes that sit at branch, points leading to several essential products sometimes display negative cooperativity for feedback inhibition (allosteric inhibition) by one of the products. What might be the advantage of negative cooperativity instead of positive cooperativity in feedback inhibitor binding by such enzymes?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Graphing the Results from Kinetics Experiments with Enzyme Inhibitors The following kinetic data were obtained for an enzyme in the absence of any inhibitor (1), and in the presence of two different inhibitors (2) and (3) at 5 mM concentration. Assume [ET] is the same in each experiment. Graph these data as Lineweaver-Burk plots and use your graph to find answers to a. and b. a. Determine Vmax and Km for the enzyme. b. Determine the type of inhibition and the K1 for each inhibitor.
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Comparing Membrane Barrel Structures Compare the porin proteins, which have transmembrane pores constructed from -barrels, with the Wza protein, which has a transmembrane pore constructed from a ring of -helices. How many amino acids are required to form the -barrel of a porin? How many would be required to form the same-sized pore from -helices?
  • Answers to all problems are at the end οΓthis book. Detailed solutions are available in the Student Solutions Manual. Study Guide, and Problems Book. Using Site-Direcled Muta.nts to Understand an Enzyme Mechanism In this chapter, the exponent in which Craik and Rutter replaced Asp102 with Asn in trypsin (reducing activity 10,000 -fold) was discussed. On the basis of your knowledge of the catalytic triad structure in trypsin, suggest a structure for the “uncatalytic triad of Asn-His-Ser in this mutant enzyme. Explain why the structure you have proposed explains the reduced activity of the mutant trypsin. See the original journal articles (Sprang, et al., 1987. Science 237:905-913) to Craik, et al., 1987. Scieence 237:909-913) to see Craik and Rutter's answer to this question.
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. The Dimensions of Mitochondria and Their Constituents Assume that mitochondria are cylinders 1.5 m in length and 0.6 m in diameter. (Section 1.5) What is the volume of a single mitochondrion? Oxaloacetate is an intermediate in the citric acid cycle, an important metabolic pathway localized in the mitochondria of eukaryotic cells. The concentration of oxaloacetate in mitochondria is about 0.03 . How many molecules of oxaloacetate are in a single mitochondrion?
    Answers to all problems are at the end of this book. Detailed solutions are available in the Student Solutions Manual, Study Guide, and Problems Book. Using Graphical Methods to Derive the Kinetic Constants for an Ordered, Single-Displacement Reaction The general rate equation for an ordered, single-displacement reaction where A is the leading substrate is v=Vmax[ A ][ B ](KsAKmB+KmA[ B ]+KmB[ A ]+[ A ][ B ])Write the Lineweaver-Burk (double-reciprocal) equivalent of this equation and from it calculate algebraic expressions for the following: a. The slope b. The y-intercepts c. The horizontal and vertical coordinates of the point of intersection when 1/v is plotted versus 1/[B] at various fixed concentrations of A
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
  • Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
    Embryology | Fertilization, Cleavage, Blastulation; Author: Ninja Nerd;https://www.youtube.com/watch?v=8-KF0rnhKTU;License: Standard YouTube License, CC-BY