Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 57QP
Interpretation Introduction

Interpretation:

The bond order and magnetic properties of the given molecules are to be determined.

Concept introduction:

Two atomic orbitals combine to form a bonding molecular orbital and an antibonding molecular orbital. Orbitals that lie on internuclear axis combine to form σ

(sigma) molecular orbitals, and orbitals parallel to each other combine to form π

molecular orbitals.

The molecular orbitals formed by the combination of 1s

orbitals are a bonding molecular orbital, designated by σ1s, and an antibonding molecular orbital, designated by σ1s. The 2s

orbital forms corresponding molecular orbitals.

The molecular orbitals formed by the combination of 2px

orbitals area bonding molecular orbital, designated by σ2px, and an antibonding molecular orbital, designated by σ2px.

The molecular orbitals formed by combining 2py and 2pz

orbitals are bonding molecular orbitals, designated by π2py

and π2pz, and antibonding molecular orbitals, designated by π2py

and π2pz.

Electrons are filled in the molecular orbitals in increasing order of energy.

Bond order is determined by subtracting the number of electrons in antibonding orbitals from the number of electrons in bonding orbitals, and dividing by two.

Higher the bond order, more stable is the molecule.

A diamagnetic substance contains paired electrons whereas a paramagnetic substance contains unpaired electrons.

Expert Solution & Answer
Check Mark

Answer to Problem 57QP

Solution:

Bond order of O2, O2+, O2, and O22 is 2, 2.5, 1.5, and 1, respectively. O22

is diamagnetic and O2, O2+, and O2

are paramagnetic.

Explanation of Solution

The electronic configuration of an oxygen atom is [ He ]2s22p4. The molecular orbital diagram for O2

is as follows:

Chemistry, Chapter 9, Problem 57QP , additional homework tip  1

Now, remove one electron from O2

to get the molecular orbital diagram for O2+.

Chemistry, Chapter 9, Problem 57QP , additional homework tip  2

Add one electron to O2 to get the molecular orbital diagram for O2.

Chemistry, Chapter 9, Problem 57QP , additional homework tip  3

Add two electrons to O2 to get the molecular orbital diagram for O22.

Chemistry, Chapter 9, Problem 57QP , additional homework tip  4

In O2, there are 8 electrons in bonding molecular orbitals and 4 electrons in antibonding orbital. Thus, the bond order of O2 is calculated as follows:

b.o=842=2

In O2+, there are 8 electrons in bonding molecular orbitals and 3 electrons in antibonding orbital. Thus, the bond order of O2+

is calculated as follows:

b.o=832=2.5

In O2, there are 8 electrons in bonding molecular orbitals and 5 electrons in antibonding orbital. Thus, the bond order of O2+ is calculated as follows:

b.o=852=1.5

In O22, there are 8 electrons in bonding molecular orbitals and 5 electrons in antibonding orbital. Thus, the bond order of O22

is calculated as follows:

b.o=862=1

Conclusion

A molecule of O2

contains two unpaired electrons, O2+

contains one unpaired electron, O2

contains one unpaired electron, and O22

contains no unpaired electron. Thus, O22

is diamagnetic and O2, O2+, and O2

are paramagnetic.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
[Fe(H2O)6]2+,  calculate the bond order

Chapter 9 Solutions

Chemistry

Ch. 9.2 - Practice ProblemCONCEPTUALIZE Which of these...Ch. 9.2 - 9.2.1 Identify the polar molecules in the...Ch. 9.2 - Identify the nonpolar molecules in the following...Ch. 9.3 - Practice ProblemATTEMPT Use valence bond theory to...Ch. 9.3 - Practice ProblemBUILD For which molecule(s) can we...Ch. 9.3 - Practice ProblemCONCEPTUALIZE Which of these...Ch. 9.3 - Which of the following atoms, in its ground state,...Ch. 9.3 - According to valence bond theory, how many bonds...Ch. 9.4 - Practice Problem ATTEMPT Use hybrid orbital theory...Ch. 9.4 - Practice ProblemBUILD Use hybrid orbital theory to...Ch. 9.4 - Prob. 1PPCCh. 9.4 - How many orbitals does a set of s p 2 hybrid...Ch. 9.4 - How many p atomic orbitals are required to...Ch. 9.5 - Practice Problem ATTEMPT The active ingredient in...Ch. 9.5 - Practice ProblemBUILD Determine the total number...Ch. 9.5 - Practice ProblemCONCEPTUALIZE In terms of valence...Ch. 9.5 - Which of the following molecules contain one or...Ch. 9.5 - 9.5.2 From left to right, give the hybridization...Ch. 9.5 - Which of the following pairs of atomic orbitals on...Ch. 9.5 - 9.5.4 Which of the following pairs of atomic...Ch. 9.6 - Practice ProblemATTEMPT Use valence bond theory...Ch. 9.6 - Prob. 1PPBCh. 9.6 - Prob. 1PPCCh. 9.6 - Prob. 1CPCh. 9.6 - Prob. 2CPCh. 9.6 - Prob. 3CPCh. 9.6 - Prob. 4CPCh. 9.7 - Prob. 1PPACh. 9.7 - Prob. 1PPBCh. 9.7 - Prob. 1PPCCh. 9.7 - Prob. 1CPCh. 9.7 - Prob. 2CPCh. 9.7 - Prob. 3CPCh. 9.7 - Prob. 4CPCh. 9.8 - Practice ProblemATTEMPT Use a combination of...Ch. 9.8 - Practice ProblemBUILD Use a combination of valence...Ch. 9.8 - Prob. 1PPCCh. 9 - Prob. 1KSPCh. 9 - Which of the following species does not have...Ch. 9 - 9.3 Which of the following species is polar? Ch. 9 - Which of the following species is nonpolar (a) IC1...Ch. 9 - How is the geometry of a molecule defined, and why...Ch. 9 - 9.2 Sketch the shape of a linear triatomic...Ch. 9 - How many atoms are directly bonded to the central...Ch. 9 - Discuss the basic features of the VSEPR model....Ch. 9 - In the trigonal bipyramidal arrangement, why does...Ch. 9 - 9.6 Explain why the molecule is not square...Ch. 9 - Predict the geometries of the following species...Ch. 9 - Predict the geometries of the following species: (...Ch. 9 - Predict the geometry of the following molecules...Ch. 9 - Predict the geometry of the following molecules...Ch. 9 - Predict the geometry of the following ions using...Ch. 9 - 9.12 Predict the geometries of the following ions:...Ch. 9 - Describe the geometry around each of the three...Ch. 9 - 9.14 Which of the following species are...Ch. 9 - Prob. 15QPCh. 9 - The bonds in beryllium hydride ( BeH 2 ) molecules...Ch. 9 - Determine whether (a) BrF 5 and (b) BCl 3 are...Ch. 9 - Determine whether (a) OCS and (b) XeF 4 are polar.Ch. 9 - Prob. 19QPCh. 9 - Prob. 20QPCh. 9 - Prob. 21QPCh. 9 - Use valence bond theory to explain the bonding in...Ch. 9 - Prob. 23QPCh. 9 - Prob. 24QPCh. 9 - 9.25 What is the hybridization of atomic orbitals?...Ch. 9 - Prob. 26QPCh. 9 - 9.27 What is the angle between the following two...Ch. 9 - Prob. 28QPCh. 9 - Prob. 29QPCh. 9 - Prob. 30QPCh. 9 - Prob. 31QPCh. 9 - Prob. 32QPCh. 9 - Prob. 33QPCh. 9 - Prob. 34QPCh. 9 - Which of the following pairs of atomic orbitals of...Ch. 9 - Prob. 36QPCh. 9 - 9.37 Specify which hybrid orbitals are used by...Ch. 9 - The allene molecule ( H 2 C=C=CH 2 ) is linear...Ch. 9 - Prob. 39QPCh. 9 - Prob. 40QPCh. 9 - How many pi bonds and sigma bonds are there in the...Ch. 9 - Prob. 42QPCh. 9 - Benzo(a)pyrene is a potent carcinogen found in...Ch. 9 - What is molecular orbital theory? How does it...Ch. 9 - 9.45 Define the following terms: bonding molecular...Ch. 9 - Sketch the shapes of the following molecular...Ch. 9 - Explain the significance of bond order. Can bond...Ch. 9 - Explain in molecular orbital terms the changes in...Ch. 9 - 9.49 The formation of from two atoms is an...Ch. 9 - 9.50 Draw a molecular orbital energy level diagram...Ch. 9 - Prob. 51QPCh. 9 - Prob. 52QPCh. 9 - Which of these species has a longer bond, B 2 or B...Ch. 9 - Prob. 54QPCh. 9 - 9.55 Compare the Lewis and molecular orbital...Ch. 9 - Prob. 56QPCh. 9 - Prob. 57QPCh. 9 - Prob. 58QPCh. 9 - A single bond is almost always a sigma bond, and a...Ch. 9 - Prob. 60QPCh. 9 - In Chapter 8, we saw that the resonance concept is...Ch. 9 - Prob. 62QPCh. 9 - Prob. 63QPCh. 9 - Prob. 64QPCh. 9 - Nitryl fluoride ( FNO 2 ) is very reactive...Ch. 9 - Prob. 66QPCh. 9 - Prob. 67QPCh. 9 - Which of the following species is not likely to...Ch. 9 - Prob. 69APCh. 9 - Although both carbon and silicon are in Group 4A,...Ch. 9 - Predict the geometry of sulfur dichloride ( SCl 2...Ch. 9 - Antimony pentafluoride ( sbF 5 ) reacts with XeF 4...Ch. 9 - Prob. 73APCh. 9 - Prob. 74APCh. 9 - Predict the bond angles for the following...Ch. 9 - Briefly compare the VSEPR and hybridization...Ch. 9 - 9.77 Draw Lewis structures and give the other...Ch. 9 - Prob. 78APCh. 9 - Determine whether (a) PCl 5 and (b) H 2 CO (C...Ch. 9 - Prob. 80APCh. 9 - 9.81 Which of the following molecules are linear:...Ch. 9 - Prob. 82APCh. 9 - 9.83 The molecule can exist in either of the...Ch. 9 - Cyclopropane ( C 3 H 6 ) has the shape of a...Ch. 9 - Determine whether (a) CH 2 Cl 2 and (b) XeF 4 are...Ch. 9 - 9.86 Does the following molecule have a dipole...Ch. 9 - For which molecular geometries (linear, bent,...Ch. 9 - Prob. 88APCh. 9 - 9.89 Carbon suboxide is a colorless...Ch. 9 - The following molecules ( AX 4 Y 2 ) all have an...Ch. 9 - Prob. 91APCh. 9 - Write the ground-state electron configuration for...Ch. 9 - 9.93 What is the hybridization of C and of N in...Ch. 9 - The stable allotropic form of phosphorus is P 4 ,...Ch. 9 - Prob. 95APCh. 9 - Use molecular orbital theory to explain the...Ch. 9 - Carbon dioxide has a linear geometry and is...Ch. 9 - Draw three Lewis structures for compounds with the...Ch. 9 - Prob. 99APCh. 9 - Prob. 100APCh. 9 - Prob. 101APCh. 9 - Draw the Lewis structure of ketene ( C 2 H 2 O )...Ch. 9 - Prob. 103APCh. 9 - Which of the following ions possess a dipole...Ch. 9 - Prob. 105APCh. 9 - Prob. 106APCh. 9 - The compound TCDD, or...Ch. 9 - Progesterone is a hormone responsible for female...Ch. 9 - 9.109 Carbon monoxide is a poisonous compound due...Ch. 9 - Prob. 110APCh. 9 - Prob. 111APCh. 9 - Prob. 112APCh. 9 - 9.113 The compound 1,2-dichloroethane is...Ch. 9 - Consider an N 2 molecule in its first excited...Ch. 9 - Prob. 115APCh. 9 - Prob. 1SEPPCh. 9 - Prob. 2SEPPCh. 9 - These questions are not based on a descriptive...Ch. 9 - These questions are not based on a descriptive...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
INTRODUCTION TO MOLECULAR QUANTUM MECHANICS -Valence bond theory - 1; Author: AGK Chemistry;https://www.youtube.com/watch?v=U8kPBPqDIwM;License: Standard YouTube License, CC-BY