Fluid Mechanics: Fundamentals and Applications
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 94P
To determine

The expression for velocity component uθ.

Expert Solution & Answer
Check Mark

Answer to Problem 94P

The expression for velocity component uθ is Ro2ωoRo2Ri2(rRi2r).

Explanation of Solution

Given information:

The flow is steady, laminar, two-dimensional and incompressible. The flow is rotationally symmetric means nothing is function of coordinate θ and the flow is circular means velocity component ur is 0.

The inner cylinder is fixed and angular speed of outer cylinder is ωo, radius of outer cylinder is Ro and radius of inner cylinder is Ri.

Write the expression for continuity equation.

  1r(rur)r+1r(uθ)θ=0   ....... (I)

Here, velocity components are ur and uθ, radius is r and angle is θ.

Write the expression for the θ -component of Navier-Stokes equation.

  [ρ(ur u θr+ u θr u θθ+ u r u θr)]=[1rPθ+μ(1rr(r uθ r) u θ r 2+1 r 2 2 u θ θ 22 r 2 u rθ)+ρgθ]  ......(II)

Here, density is ρ, time is t, dynamic viscosity is μ and gravitational acceleration in θ -direction is gθ.

Calculation:

Substitute 0 for ur and 0 for (uθ)θ in Equation (I).

  1r(0)r+1r(0)=00+0=00=0  ......(IV)

Since both sides of Equation (IV) are equal, therefore continuity equation is verified.

Substitute 0 for ur, 0 for gθ, 0 for Pθ and 0 for (uθ)θ in Equation (II).

  [ρ(( 0) uθ r+ uθ r( 0)+ (0 )uθ r)]=[1r(0)+μ( 1 r r( r u θr ) uθ r2 + 1 r2 ( 0) 2 r2 ( 0))+ρ(0)]μ(1rr(r u θ r)uθr2)=0(1rr(r u θ r)uθr2)=01r(r2uθr2+uθr)uθr2=0

  2uθr2+1ruθruθr2=01ruθr+1ruθr+2uθr21ruθruθr2=01ruθr+1r(uθr+r2uθr2)1ruθruθr2=01ruθr+1rr(r( u θ r))1ruθruθr2=0

  1r(r(uθ+r( uθ r )))1ruθruθr2=01r2r2(ruθ)1ruθruθr2=01r2r2(ruθ)1r2(ruθr+uθ)=01r2r2(ruθ)1r2r(ruθ)=0

  r(1rr(ruθ))=0   ....... (V)

Change from partial derivative to total derivative in Equation (V).

  ddr(1rddr(ruθ))=0   ....... (VI)

Integrate Equation (VI) with respect to r.

  1rddr(ruθ)=C1ddr(ruθ)=C1r   ...... (VII)

Here arbitrary constant is C1.

Again, Integrate Equation (VII) with respect to r.

  ruθ=C1r22+C2uθ=C1r2+C2r   ....... (VIII)

Here, arbitrary constant is C2.

Substitute 0 for uθ and Ri for r in Equation (VIII).

  0=C1(Ri)2+C2(Ri)C2(Ri)=C1(Ri)2C2=C1Ri22   ...... (IX)

Substitute Roωo for uθ, C1Ri22 for C2 and Ro for r in Equation (VIII).

  Roωo=C1Ro2+( C 1 R i 2 2)RoRoωo=C1Ro2C1Ri22RoRoωo=C1(Ro2Ri22Ro)C1=2Ro2ωoRo2Ri2

Substitute 2Ro2ωoRo2Ri2 for C1 in Equation (IX).

  C2=( 2 R o 2 ω o R o 2 R i 2 )Ri22=Ri2Ro2ωoRo2Ri2

Substitute Ri2Ro2ωoRo2Ri2 for C2 and 2Ro2ωoRo2Ri2 for C1 in Equation (VIII).

  uθ=( 2 R o 2 ω o R o 2 R i 2 )r2+( R i 2 R o 2 ω o R o 2 R i 2 )r=Ro2rωoRo2Ri2Ri2Ro2ωor(Ro2Ri2)=Ro2ωoRo2Ri2(rRi2r)

Conclusion:

The expression for velocity component uθ is Ro2ωoRo2Ri2(rRi2r).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q/What are the tyes of perkodie motion and resoeting karces? Explain it in details
Write down the Limitations of Euler’s Formula and explain them in detail.
Can you answer this without the application of the moments. Please help with this.    the answer must be: T= 6.1953s max. velocity = 0.4057in/s

Chapter 9 Solutions

Fluid Mechanics: Fundamentals and Applications

Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license