BuyFindarrow_forward

Elementary Geometry For College St...

7th Edition
Alexander + 2 others
ISBN: 9781337614085

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry For College St...

7th Edition
Alexander + 2 others
ISBN: 9781337614085
Textbook Problem

In Exercises 20 and 21, use Theorem 9.2.1 in which the lengths of apothem a , altitude h , and slant height l of a regular pyramid are related by the equation l 2 = a 2 + h 2 .

In a regular hexagonal pyramid whose base edges measure 2 3 i n . , the apothem of the base measures 3 i n . If the slant height of the pyramid is 5 i n . , find the length of its altitude.

To determine

To find:

The length of its altitude.

Explanation

Given:

A regular hexagonal pyramid whose base edges measure 23in., the apothem of the base measures 3in. and the slant height of the pyramid is 5in.

Properties Used:

A pyramid is made by connecting a base to an apex. The base is flat with straight edges, no curves, hence, a polygon and all other faces are triangles.

A regular pyramid is a pyramid whose base is a regular polygon and whose lateral edges are all congruent.

In a regular pyramid with slant height l, height h, apothem a, lateral edge e, and radius r,

The altitude/height h of the pyramid is the line segment from the vertex perpendicular to the plane of the base.

The apothem a of a regular polygon is a line segment that is perpendicular from the center to the midpoint of one of its sides.

The slant height l of a regular pyramid is the altitude from the vertex (apex) of the pyramid to the base of any of the congruent lateral faces of the regular pyramid.

In a regular pyramid, the lengths of the apothem a of the base, the altitude h, and the slant height l satisfy the Pythagorean Theorem; that is, l2=a2+h2.

In a right-angled triangle, the hypotenuse is the longest side.

Calculation:

Considering a regular hexagonal pyramid with vertex V and slant height l, height h, apothem a, lateral edge e, and radius r.

Given that base edges measure 23in

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-9.1 P-11ESect-9.1 P-12ESect-9.1 P-13ESect-9.1 P-14ESect-9.1 P-15ESect-9.1 P-16ESect-9.1 P-17ESect-9.1 P-18ESect-9.1 P-19ESect-9.1 P-20ESect-9.1 P-21ESect-9.1 P-22ESect-9.1 P-23ESect-9.1 P-24ESect-9.1 P-25ESect-9.1 P-26ESect-9.1 P-27ESect-9.1 P-28ESect-9.1 P-29ESect-9.1 P-30ESect-9.1 P-31ESect-9.1 P-32ESect-9.1 P-33ESect-9.1 P-34ESect-9.1 P-35ESect-9.1 P-36ESect-9.1 P-37ESect-9.1 P-38ESect-9.1 P-39ESect-9.1 P-40ESect-9.1 P-41ESect-9.1 P-42ESect-9.1 P-43ESect-9.1 P-44ESect-9.1 P-45ESect-9.1 P-46ESect-9.1 P-47ESect-9.1 P-48ESect-9.1 P-49ESect-9.2 P-1ESect-9.2 P-2ESect-9.2 P-3ESect-9.2 P-4ESect-9.2 P-5ESect-9.2 P-6ESect-9.2 P-7ESect-9.2 P-8ESect-9.2 P-9ESect-9.2 P-10ESect-9.2 P-11ESect-9.2 P-12ESect-9.2 P-13ESect-9.2 P-14ESect-9.2 P-15ESect-9.2 P-16ESect-9.2 P-17ESect-9.2 P-18ESect-9.2 P-19ESect-9.2 P-20ESect-9.2 P-21ESect-9.2 P-22ESect-9.2 P-23ESect-9.2 P-24ESect-9.2 P-25ESect-9.2 P-26ESect-9.2 P-27ESect-9.2 P-28ESect-9.2 P-29ESect-9.2 P-30ESect-9.2 P-31ESect-9.2 P-32ESect-9.2 P-33ESect-9.2 P-34ESect-9.2 P-35ESect-9.2 P-36ESect-9.2 P-37ESect-9.2 P-38ESect-9.2 P-39ESect-9.2 P-40ESect-9.2 P-41ESect-9.2 P-42ESect-9.2 P-43ESect-9.2 P-44ESect-9.2 P-45ESect-9.3 P-1ESect-9.3 P-2ESect-9.3 P-3ESect-9.3 P-4ESect-9.3 P-5ESect-9.3 P-6ESect-9.3 P-7ESect-9.3 P-8ESect-9.3 P-9ESect-9.3 P-10ESect-9.3 P-11ESect-9.3 P-12ESect-9.3 P-13ESect-9.3 P-14ESect-9.3 P-15ESect-9.3 P-16ESect-9.3 P-17ESect-9.3 P-18ESect-9.3 P-19ESect-9.3 P-20ESect-9.3 P-21ESect-9.3 P-22ESect-9.3 P-23ESect-9.3 P-24ESect-9.3 P-25ESect-9.3 P-26ESect-9.3 P-27ESect-9.3 P-28ESect-9.3 P-29ESect-9.3 P-30ESect-9.3 P-31ESect-9.3 P-32ESect-9.3 P-33ESect-9.3 P-34ESect-9.3 P-35ESect-9.3 P-36ESect-9.3 P-37ESect-9.3 P-38ESect-9.3 P-39ESect-9.3 P-40ESect-9.3 P-41ESect-9.3 P-42ESect-9.3 P-43ESect-9.3 P-44ESect-9.3 P-45ESect-9.3 P-46ESect-9.3 P-47ESect-9.3 P-48ESect-9.3 P-49ESect-9.4 P-1ESect-9.4 P-2ESect-9.4 P-3ESect-9.4 P-4ESect-9.4 P-5ESect-9.4 P-6ESect-9.4 P-7ESect-9.4 P-8ESect-9.4 P-9ESect-9.4 P-10ESect-9.4 P-11ESect-9.4 P-12ESect-9.4 P-13ESect-9.4 P-14ESect-9.4 P-15ESect-9.4 P-16ESect-9.4 P-17ESect-9.4 P-18ESect-9.4 P-19ESect-9.4 P-20ESect-9.4 P-21ESect-9.4 P-22ESect-9.4 P-23ESect-9.4 P-24ESect-9.4 P-25ESect-9.4 P-27ESect-9.4 P-28ESect-9.4 P-29ESect-9.4 P-30ESect-9.4 P-31ESect-9.4 P-32ESect-9.4 P-33ESect-9.4 P-34ESect-9.4 P-35ESect-9.4 P-36ESect-9.4 P-37ESect-9.4 P-38ESect-9.4 P-39ESect-9.4 P-40ESect-9.4 P-41ESect-9.4 P-42ESect-9.4 P-43ESect-9.4 P-44ESect-9.4 P-45ESect-9.4 P-46ESect-9.4 P-47ESect-9.4 P-48ESect-9.4 P-49ESect-9.4 P-50ESect-9.CR P-1CRSect-9.CR P-2CRSect-9.CR P-3CRSect-9.CR P-4CRSect-9.CR P-5CRSect-9.CR P-6CRSect-9.CR P-7CRSect-9.CR P-8CRSect-9.CR P-9CRSect-9.CR P-10CRSect-9.CR P-11CRSect-9.CR P-12CRSect-9.CR P-13CRSect-9.CR P-14CRSect-9.CR P-15CRSect-9.CR P-16CRSect-9.CR P-17CRSect-9.CR P-18CRSect-9.CR P-19CRSect-9.CR P-20CRSect-9.CR P-21CRSect-9.CR P-22CRSect-9.CR P-23CRSect-9.CR P-24CRSect-9.CR P-25CRSect-9.CR P-26CRSect-9.CR P-27CRSect-9.CR P-28CRSect-9.CR P-29CRSect-9.CR P-30CRSect-9.CR P-31CRSect-9.CR P-32CRSect-9.CT P-1CTSect-9.CT P-2CTSect-9.CT P-3CTSect-9.CT P-4CTSect-9.CT P-5CTSect-9.CT P-6CTSect-9.CT P-7CTSect-9.CT P-8CTSect-9.CT P-9CTSect-9.CT P-10CTSect-9.CT P-11CTSect-9.CT P-12CTSect-9.CT P-13CTSect-9.CT P-14CTSect-9.CT P-15CTSect-9.CT P-16CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 15-18, find the limit (if it exists). limx0x2x+2

Calculus: An Applied Approach (MindTap Course List)

83-94 Evaluate the integral. ex(4+ex)5dx

Calculus (MindTap Course List)

Find the derivatives of the functions in Problems 1-34. 31.

Mathematical Applications for the Management, Life, and Social Sciences

In Exercises 69-74, rationalize the numerator. 73. x2z3y

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In Exercises 4756, solve the given equation for the indicated variable. 5x+1=1125

Finite Mathematics and Applied Calculus (MindTap Course List)

The arc length of y = 3x + 2 from x = 1 to x = 5 is a) 210 b) 52 c) 102 d) 410

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

The interval of convergence of is: [−1, 1] [−1, 1) (−1, 1] (−1, 1)

Study Guide for Stewart's Multivariable Calculus, 8th