
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9.3, Problem 4P
Given: F = 587 N
υ = 0.780 m/s
m = 67.0 kg
r = __________ m
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Steel train rails are laid in 15.0-m-long segments
placed end to end. The rails are laid on a winter day
when their temperature is -1.0 °C.
Part A
How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is
34.0°C?
Express your answer to two significant figures and include the appropriate units.
D= 0.0058
Submit
0
?
m
Previous Answers Request Answer
× Incorrect; Try again; 4 attempts remaining
Part B
If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 34.0°C?
Express your answer using two significant figures. Enter positive value if the stress is tensile and negative value if the
stress is compressive.
ΤΟ ΑΣΦ
TA
F
=
-7.7.107
Submit
Q
Previous Answers Request Answer
× Incorrect; Try Again; 5 attempts remaining
?
Pa
Part h & I please
Kindly help me in drawing the graphs.
Chapter 9 Solutions
Applied Physics (11th Edition)
Ch. 9.1 - Convert 612 revolutions a. to radians. b. to...Ch. 9.1 - Convert 2880 a. to revolutions. b. to radians.Ch. 9.1 - Convert 25 rad a. to revolutions. b. to degrees.Ch. 9.1 - Convert 12.0 revolutions a. to radians. b. to...Ch. 9.1 - Number of revolutions = 525 t = 3.42 min = ______...Ch. 9.1 - Number of revolutions = 7360 t = 37.0 s = _______...Ch. 9.1 - Number of revolutions = 4.00 t = 3.00 s =...Ch. 9.1 - Number of re volutions = 325 t = 5.00 min =...Ch. 9.1 - Number of revolutions = 6370 t = 18.0s = ________...Ch. 9.1 - Number of revolutions = 6.25 t = 5.05 s =...
Ch. 9.1 - Convert 675 rad/s to rpm.Ch. 9.1 - Convert 285 rpm to rad/s.Ch. 9.1 - Convert 136 rpm to rad/s.Ch. 9.1 - Convert 88.4 rad/s to rpm.Ch. 9.1 - A motor turns at a rate of 11.0 rev/s. Find its...Ch. 9.1 - A rotor turns at a rate 180 rpm. Find its angular...Ch. 9.1 - A rotating wheel completes one revolution in 0.150...Ch. 9.1 - A rotor completes 50.0 revolutions in 3.25 s. Find...Ch. 9.1 - A flywheel rotates at 1050 rpm. (a) How long (in...Ch. 9.1 - A wheel rotates at 36.0 rad/s. (a) How long (in s)...Ch. 9.1 - A shaft of radius 8.50 cm rotates 7.00 rad/s. Find...Ch. 9.1 - Awheel of radius 0.240 m turns at 4.00 rev/s. Find...Ch. 9.1 - A pendulum of length 1.50 m swings through an arc...Ch. 9.1 - An airplane circles an airport twice while 5.00 mi...Ch. 9.1 - A wheel of radius 27.0 cm has an angular speed of...Ch. 9.1 - A belt is placed around a pulley that is 30.0 cm...Ch. 9.1 - A flywheel of radius 25.0 cm is rotating at 655...Ch. 9.1 - An airplane propeller with blades 2.00 m long is...Ch. 9.1 - An automobile is traveling at 60.0 km/h. Its tires...Ch. 9.1 - Ftnd the angular speed (in rad/s) of the following...Ch. 9.1 - A bicycle wheel of diameter 30 0 in rotates twice...Ch. 9.1 - A point on the rim of a flywheel with radius 1.50...Ch. 9.1 - The earth rotates on its axis at an angular speed...Ch. 9.1 - A truck tire rotates at an initial angular speed...Ch. 9.1 - Find the angular acceleration of a radiator fan...Ch. 9.1 - A wheel of radius 20.0 cm starts from rest and...Ch. 9.1 - A circular disk 30.0 cm in diameter is rotating at...Ch. 9.1 - A rotating flywheel of diameter 40.0 cm uniformly...Ch. 9.3 - Given: m = 64.0 kg = 34.0 m/s r = 17.0 m F =...Ch. 9.3 - Given: m = 11.3 slugs = 3.00 ft/s r = 3.24 ft F =...Ch. 9.3 - Given: F = 2500 lb = 47.6 ft/s r = 72.0 ft m =...Ch. 9.3 - Given: F = 587 N = 0.780 m/s m = 67.0 kg r =...Ch. 9.3 - Given: F = 602 N m = 63.0 kg r = 3.20 m =...Ch. 9.3 - Given: m = 37.5 kg = 17.0 m/s r = 3.75 m F =...Ch. 9.3 - Given: F = 75.0 N = 1.20 m/s m = 100 kg r =...Ch. 9.3 - Given: F = 80.0 N m = 43.0 kg r = 17.5 m =...Ch. 9.3 - An automobile of mass 117 slugs follows a curve of...Ch. 9.3 - Find the centripetal force exerted on a 7.12-kg...Ch. 9.3 - The centripetal force on a car of mass 800kg...Ch. 9.3 - The centripetal force on a runner is 17.0 lb. If...Ch. 9.3 - An automobile with mass 1650 kg is driven around a...Ch. 9.3 - A cycle of mass 510 kg rounds a curve of radius 40...Ch. 9.3 - What is the centripetal force exerted on a rock...Ch. 9.3 - What is the centripetal force on a 1500-kg vehicle...Ch. 9.3 - What is the centripetal force on a 750-kg vehicle...Ch. 9.3 - A truck with mass 215 slugs rounds a curve of...Ch. 9.3 - A 225-kg dirt bike is rounding a curve with linear...Ch. 9.3 - A 55,000-kg truck rounds a curve at 62.0 km/h. If...Ch. 9.3 - The radius of a curve is 27.5 m. What is the...Ch. 9.4 - Given: = 125 lb ft = 555 rpm P = ________ ft...Ch. 9.4 - Given: = 39.4 N m = 6.70/s P = _________ WCh. 9.4 - Given: = 372 lb ft = 264 rpm P = __________ hpCh. 9.4 - Given: = 650 N m = 45.0/s P = _________ kWCh. 9.4 - Giver: P = 8950W = 4.80/s = _____________Ch. 9.4 - Given: P = 650W = 540 N m = ________Ch. 9.4 - What horsepower is developed by an engine with...Ch. 9.4 - What torque must be applied to develop 175 ft fb/s...Ch. 9.4 - Find the angular velocity of a motor developing...Ch. 9.4 - A high-speed industrial drill develops 0.500 hp at...Ch. 9.4 - An engine has torque of 550 N m at 8.3 rad/s. What...Ch. 9.4 - Find the angular velocity of a motor developing...Ch. 9.4 - What power (in hp) is developed by an engine with...Ch. 9.4 - Find the angular velocity of a motor developing...Ch. 9.4 - A drill develops 0.500 kW of power at 1800 rpm....Ch. 9.4 - What power is developed by an engine with torque...Ch. 9.4 - A tangential force of 150 N is applied to a...Ch. 9.4 - Find the power developed by an engine with a...Ch. 9.4 - Find the power developed by an engine with a...Ch. 9.4 - Find the power developed by an engine with torque...Ch. 9.4 - Find the angular velocity of a motor daveloping...Ch. 9.4 - A motor develops 0.75 kW of power at 2000...Ch. 9.4 - What power is developed when a tangential force of...Ch. 9.4 - What power is developed when a tangential force of...Ch. 9.4 - An engine develops 1.50 kW of power at 10,000...Ch. 9.4 - A mechanic tightens engine bolts using 45.5 N m of...Ch. 9.4 - An ag mechanic tightens implement bolts using 52.5...Ch. 9.6 - Prob. 1PCh. 9.6 - Prob. 2PCh. 9.6 - Prob. 3PCh. 9.6 - Prob. 4PCh. 9.6 - Prob. 5PCh. 9.6 - Prob. 6PCh. 9.6 - A driver gear has 36 teeth and makes 85.0 rpm....Ch. 9.6 - A motor turning at 1250 rpm is fitted with a gear...Ch. 9.6 - A gear running at 250 rpm meshes with another...Ch. 9.6 - A driver gear with 40 teeth makes 154 rpm. How...Ch. 9.6 - Two gears have a speed ratio of 4.2 to 1. If the...Ch. 9.6 - What size gear should be meshed with a 15-tooth...Ch. 9.6 - A driver gear has 72 teeth and makes 162 rpm. Find...Ch. 9.6 - A driver gear with 60 teeth makes 1600 rpm. How...Ch. 9.6 - What size gear should be meshed with a 20-tooth...Ch. 9.6 - A motor turning at 1500 rpm is fitted with a gear...Ch. 9.6 - The larger of two gears in a clock has 36 teeth...Ch. 9.6 - How many revolutions does an 88-tooth gear make in...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each rear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the direction of rotation of gear B if gear A...Ch. 9.6 - Find the effect of doubling the number of teeth on...Ch. 9.7 - Find each missing quantity using DN = dn. 1.Ch. 9.7 - Find each missing quantity using DN = dn. 2.Ch. 9.7 - Find Bach missing quantity using DN = dn. 3.Ch. 9.7 - Find each missing quantity using DN = dn. 4.Ch. 9.7 - Find each missing quantity using DN = dn. 5.Ch. 9.7 - A driver pulley of diameter 6.50 in. revolves at...Ch. 9.7 - A driver pulley of diameter 25.0 cm revolves at...Ch. 9.7 - One pulley of diameter 36.0 cm revolves at 600...Ch. 9.7 - One pulley rotates at 450 rpm. The diameter of the...Ch. 9.7 - A pulley with a radius of 10.0 cm rotates at 120...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - What size pulley should be placed on a...Ch. 9 - Angular velocity is measured in a....Ch. 9 - Power in the rotational system a. is found in the...Ch. 9 - A gear train has 13 directly connected gears. The...Ch. 9 - Distinguish between curvilinear motion and...Ch. 9 - Name the two types of measurement of rotation.Ch. 9 - In your own words, define radian.Ch. 9 - What is angular displacement? In what units is it...Ch. 9 - How is linear velocity of a point on a circle...Ch. 9 - How do equations for uniformly accelerated...Ch. 9 - A girl jumping from a high platform into a pool...Ch. 9 - Is the tangent to a circle always perpendicular to...Ch. 9 - Will inertia tend to keep a moving body following...Ch. 9 - Explain the relationship between the number of...Ch. 9 - How does the presence of an idler gear affect the...Ch. 9 - When the number of directly connected gears in a...Ch. 9 - How do pulley combination equations compare to...Ch. 9 - If a large pulley and a small pulley are connected...Ch. 9 - How do we know the belt connecting two pulleys...Ch. 9 - Convert 13 revolutions to (a) radians and...Ch. 9 - A bicycle wheel turns 25 rad during 45 s. Find the...Ch. 9 - A lawn tractor tire turns at 65.0 rpm and has a...Ch. 9 - A model plane pulls into a tight curve of a radius...Ch. 9 - A 0.950-kg mass is spun in a circle on a string of...Ch. 9 - A girl riding her bike creates a torque of 1.20 lb...Ch. 9 - A motor generates 300 W of power. The torque...Ch. 9 - Two rollers are side by side, with the large one...Ch. 9 - A clock is driven by a series of gears. The first...Ch. 9 - Two gears have 13 and 26 teeth, respectively. The...Ch. 9 - A gear train has 17 directly connected gears. Do...Ch. 9 - A pulley of diameter 14.0 cm is driven by an...Ch. 9 - A pulley of diameter 5.00 cm is driven at 100 rpm....Ch. 9 - If gear C turns counterclockwise, in what...Ch. 9 - Find the speed in rpm of gear D.Ch. 9 - Find the number of teeth in gear D.Ch. 9 - As part of their training, NASA astronauts are...Ch. 9 - Waterwheels are used to convert kinetic energy...Ch. 9 - A hairpin turn on a concrete racetrack has a...Ch. 9 - (a) How much power does a motorcycle need to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
22. A rock is tossed straight up from ground level with a speed of 20 m/s. When it returns, it falls into a hol...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. What happen when a Proton collide with...
Cosmic Perspective Fundamentals
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Assume that genes, A and B are on the same chromosome and are 50 map units apart. An animal heterozygous at bot...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 31.66 3 of 3 Review Introduction Consider current I passing through a resistor of radius r , length L , and resistance R . Part A Determine the electric field at the surface of the resistor. Assume that the electric field is uniform throughout, including at the surface. Express your answer in terms of some, all, or none of the variables I , R , L , r . E = Part B Determine the magnetic field at the surface of the resistor. Assume that the electric field is uniform throughout, including at the surface. Express your answer in terms of some, all, or none of the variables I, R, L, r, and the constants π, μ0. Part C Determine the strength of the Poynting vector at the surface of the resistor. Express your answer in terms of some, all, or none of the variables I, R, L, r, and the appropriate constants. Part D Determine the flux of the Poynting vector (i.e., the integral of S⃗ ⋅dA⃗ ) over the surface of the resistor. Express your answer in terms of some, all, or none of the…arrow_forwardSteel train rails are laid in 15.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -1.0 °C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 34.0°C? Express your answer to two significant figures and include the appropriate units. ◎ Α D= 0.0072 Submit m Previous Answers Request Answer ? × Incorrect; Try Again; 5 attempts remaining Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 34.0°C? Express your answer using two significant figures. Enter positive value if the stress is tensile and negative value if the stress is compressive. ΜΕ ΑΣΦ ? || GA Submit Request Answer Provide Feedback Pa Next >arrow_forwardConstants A glass flask whose volume is 1000.00 cm³ at 0.0°C is completely filled with mercury at this temperature. When flask and mercury are warmed to 54.5 °C, 8.75 cm³ of mercury overflow. Part A If the coefficient of volume expansion of mercury is 18.0 × 10-5 K-1, compute the coefficient of volume expansion of the glass. ΕΠΙ ΑΣΦ ? ẞglass II = (C°)-1arrow_forward
- An insulated beaker with negligible mass contains liquid water with a mass of 0.285 kg and a temperature of 79.9 °C. Part A How much ice at a temperature of -21.4 °C must be dropped into the water so that the final temperature of the system will be 28.0°C? . Take the specific heat of liquid water to be 4190 J/kg K, the specific heat of ice to be 2100 J/kg K, and the heat of fusion for water to be 3.34×105 J/kg. ▸ View Available Hint(s) Mice = ΕΕ ΑΣΦ ? kgarrow_forwardPart A Calculate the change in entropy when 1.00 kg of water at 100 °C is vaporized and converted to steam at 100 °C. Assume that the heat of vaporization of water is 2256 × 103 J/kg. - ΕΠΙ ΑΣΦ VAΣ ? AS = Submit Request Answer Part B J/K Calculate the change in entropy when 1.00 kg of ice is melted at 0°C. Assume that the heat of fusion of water is L₁ = 3.34 × 105J/kg. VG ΑΣΦ AS = Submit Request Answer Part C Is the change entropy greater for melting or for vaporization? the change entropy greater for melting the change entropy greater for vaporization Submit Request Answer J/Karrow_forwardConstants A 10.8 L gas tank containing 3.20 moles of ideal He gas at 25.0 °C is placed inside a completely evacuated insulated bell jar of volume 36.0 L . A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ΕΠΙ ΑΣΦ AS = Submit Request Answer Part B Is the process reversible or irreversible? Please Choose Submit Request Answer Provide Feedback ? J/K Next >arrow_forward
- Two moles of carbon monoxide (CO) start at a pressure of 1.3 atm and a volume of 29 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΤΟ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardPart carrow_forwardA large cylindrical tank contains 0.850 m³ of nitrogen gas at 22.0 °C and 8.50×103 Pa (absolute pressure). The tank has a tight-fitting piston that allows the volume to be changed. Part A What will be the pressure if the volume is decreased to 0.470 m³ and the temperature is increased to 157 °C? ΕΠΙ ΑΣΦ ? p = Submit Request Answer Paarrow_forward
- Two billiard balls, A and B, of equal mass (150 g) move at right angles and meet at the origin of an xy coordinate system. Initially, ball A is moving along the y axis at +2.0 m/s, and ball B is moving to the right along the x axis with speed +3.7 m/s. Both balls collide and after the collision, the second ball, B, moved along the positive y axis. (a) What is the final direction of ball A? (b) What are the speeds of the two balls after the collision? (c) Considering the balls to be an isolated system, what is the net impulsive force resulting from the collision if the impact lasted for 0.4 sec? (d) Does your answer to part c make sense, explain? +y VB=3.7 m/s B V 'B B VA-2 m/s A +xarrow_forwardIn order to convert a tough split in bowling, it is necessary to strike the pin a glancing blow as shown. Assume that the bowling ball, initially traveling at 13.0 m/s, has five times the mass of a pin and that the pin goes off at 75° from the original direction of the ball. Calculate the speed (a) of the pin and (b) of the ball just after collision, and (c) calculate the angle, 0, through which the ball was deflected. Assume the collision is elastic and ignore any spin of the ball. Marrow_forwardA bullet of mass m moving with velocity v strikes and becomes embedded at the edge of a cylinder of mass M and radius Ro, as shown. The cylinder, initially at rest, begins to rotate about its symmetry axis, which remains fixed in position. Assume no frictional torque. (a) What is the total moment of inertia after the collision? (b) What is the angular velocity of the cylinder after this collision? (c) Is kinetic energy conserved (ignore the motion of the cylinder's center of mass)? (d) Assume that the cylinder rotated for t sec before coming to a stop, what is the angular acceleration of its motion? (e) What is the toque resulting from the force of impact which caused the rotation? Icyl = 0.5 M Ro² 120 m Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY