BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

Chapter 9.4, Problem 2E, For Figure a of Exercise 1, find the number of faces, vertices, and edges in the polyhedron. Then

For Figure (a) of Exercise 1, find the number of faces, vertices, and edges in the polyhedron. Then verify Euler’s equation for that polyhedron.

To determine

To find:

The number of faces, vertices and edges in the polyhedron and verify Euler’s equation.

Explanation

Approach:

A) Polyhedron

1) A polygon is a two dimensional shape form with more than two straight lines.

2) A polyhedron is a three-dimensional solid shape.

3) Each flat surface of a polyhedron is a polygon and is called a face.

4) The line segment where two faces of a polyhedron meet is called an edge.

5) The point where three or more edges of a polyhedron meet is called a vertex.

B) Euler’s Equation

A very important relationship between the number of vertices, faces and edges of solid shapes was discovered by a Swiss mathematician Leonard Euler.

It states V+FE=2.

Where, V=Number of vertices, F=number of faces, E=number of edges.

Calculation:

The polyhedron ABCD is a triangular pyramid, also called as a tetrahedron

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-9.1 P-11ESect-9.1 P-12ESect-9.1 P-13ESect-9.1 P-14ESect-9.1 P-15ESect-9.1 P-16ESect-9.1 P-17ESect-9.1 P-18ESect-9.1 P-19ESect-9.1 P-20ESect-9.1 P-21ESect-9.1 P-22ESect-9.1 P-23ESect-9.1 P-24ESect-9.1 P-25ESect-9.1 P-26ESect-9.1 P-27ESect-9.1 P-28ESect-9.1 P-29ESect-9.1 P-30ESect-9.1 P-31ESect-9.1 P-32ESect-9.1 P-33ESect-9.1 P-34ESect-9.1 P-35ESect-9.1 P-36ESect-9.1 P-37ESect-9.1 P-38ESect-9.1 P-39ESect-9.1 P-40ESect-9.1 P-41ESect-9.1 P-42ESect-9.1 P-43ESect-9.1 P-44ESect-9.1 P-45ESect-9.1 P-46ESect-9.1 P-47ESect-9.2 P-1ESect-9.2 P-2ESect-9.2 P-3ESect-9.2 P-4ESect-9.2 P-5ESect-9.2 P-6ESect-9.2 P-7ESect-9.2 P-8ESect-9.2 P-9ESect-9.2 P-10ESect-9.2 P-11ESect-9.2 P-12ESect-9.2 P-13ESect-9.2 P-14ESect-9.2 P-15ESect-9.2 P-16ESect-9.2 P-17ESect-9.2 P-18ESect-9.2 P-19ESect-9.2 P-20ESect-9.2 P-21ESect-9.2 P-22ESect-9.2 P-23ESect-9.2 P-24ESect-9.2 P-25ESect-9.2 P-26ESect-9.2 P-27ESect-9.2 P-28ESect-9.2 P-29ESect-9.2 P-30ESect-9.2 P-31ESect-9.2 P-32ESect-9.2 P-33ESect-9.2 P-34ESect-9.2 P-35ESect-9.2 P-36ESect-9.2 P-37ESect-9.2 P-38ESect-9.2 P-39ESect-9.2 P-40ESect-9.2 P-41ESect-9.2 P-42ESect-9.2 P-43ESect-9.2 P-44ESect-9.2 P-45ESect-9.3 P-1ESect-9.3 P-2ESect-9.3 P-3ESect-9.3 P-4ESect-9.3 P-5ESect-9.3 P-6ESect-9.3 P-7ESect-9.3 P-8ESect-9.3 P-9ESect-9.3 P-10ESect-9.3 P-11ESect-9.3 P-12ESect-9.3 P-13ESect-9.3 P-14ESect-9.3 P-15ESect-9.3 P-16ESect-9.3 P-17ESect-9.3 P-18ESect-9.3 P-19ESect-9.3 P-20ESect-9.3 P-21ESect-9.3 P-22ESect-9.3 P-23ESect-9.3 P-24ESect-9.3 P-25ESect-9.3 P-26ESect-9.3 P-27ESect-9.3 P-28ESect-9.3 P-29ESect-9.3 P-30ESect-9.3 P-31ESect-9.3 P-32ESect-9.3 P-33ESect-9.3 P-34ESect-9.3 P-35ESect-9.3 P-36ESect-9.3 P-37ESect-9.3 P-38ESect-9.3 P-39ESect-9.3 P-40ESect-9.3 P-41ESect-9.3 P-42ESect-9.3 P-43ESect-9.3 P-44ESect-9.3 P-45ESect-9.3 P-46ESect-9.3 P-47ESect-9.3 P-48ESect-9.3 P-49ESect-9.4 P-1ESect-9.4 P-2ESect-9.4 P-3ESect-9.4 P-4ESect-9.4 P-5ESect-9.4 P-6ESect-9.4 P-7ESect-9.4 P-8ESect-9.4 P-9ESect-9.4 P-10ESect-9.4 P-11ESect-9.4 P-12ESect-9.4 P-13ESect-9.4 P-14ESect-9.4 P-15ESect-9.4 P-16ESect-9.4 P-17ESect-9.4 P-18ESect-9.4 P-19ESect-9.4 P-20ESect-9.4 P-21ESect-9.4 P-22ESect-9.4 P-23ESect-9.4 P-24ESect-9.4 P-25ESect-9.4 P-27ESect-9.4 P-28ESect-9.4 P-29ESect-9.4 P-30ESect-9.4 P-31ESect-9.4 P-32ESect-9.4 P-33ESect-9.4 P-34ESect-9.4 P-35ESect-9.4 P-36ESect-9.4 P-37ESect-9.4 P-38ESect-9.4 P-39ESect-9.4 P-40ESect-9.4 P-41ESect-9.4 P-42ESect-9.4 P-43ESect-9.4 P-44ESect-9.4 P-45ESect-9.4 P-46ESect-9.4 P-47ESect-9.4 P-48ESect-9.4 P-49ESect-9.4 P-50ESect-9.CR P-1CRSect-9.CR P-2CRSect-9.CR P-3CRSect-9.CR P-4CRSect-9.CR P-5CRSect-9.CR P-6CRSect-9.CR P-7CRSect-9.CR P-8CRSect-9.CR P-9CRSect-9.CR P-10CRSect-9.CR P-11CRSect-9.CR P-12CRSect-9.CR P-13CRSect-9.CR P-14CRSect-9.CR P-15CRSect-9.CR P-16CRSect-9.CR P-17CRSect-9.CR P-18CRSect-9.CR P-19CRSect-9.CR P-20CRSect-9.CR P-21CRSect-9.CR P-22CRSect-9.CR P-23CRSect-9.CR P-24CRSect-9.CR P-25CRSect-9.CR P-26CRSect-9.CR P-27CRSect-9.CR P-28CRSect-9.CR P-29CRSect-9.CR P-30CRSect-9.CR P-31CRSect-9.CR P-32CRSect-9.CT P-1CTSect-9.CT P-2CTSect-9.CT P-3CTSect-9.CT P-4CTSect-9.CT P-5CTSect-9.CT P-6CTSect-9.CT P-7CTSect-9.CT P-8CTSect-9.CT P-9CTSect-9.CT P-10CTSect-9.CT P-11CTSect-9.CT P-12CTSect-9.CT P-13CTSect-9.CT P-14CTSect-9.CT P-15CTSect-9.CT P-16CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate dy if y = x3 2x2 + 1, x = 2, and dx = 0.2.

Single Variable Calculus: Early Transcendentals, Volume I

Simplify: 2736

Elementary Technical Mathematics

In Exercises 5-8, plot the graph of the function f in an appropriate viewing window. (Note: The answer is not u...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

In problems 15-26, evaluate each expression. 24.

Mathematical Applications for the Management, Life, and Social Sciences

f(x)=2x2+1x+3 has slant asymptote(s): a) y = 2x b) y = x c) y = 2x and y = 2x d) f does not have slant asymptot...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th