BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

Chapter 9.4, Problem 3E, For figure b of Exercise 1, find the number of faces, vertices, and edges in the polyhedron. Then

For figure (b) of Exercise 1, find the number of faces, vertices, and edges in the polyhedron. Then verify Euler’s equation for that polyhedron.

To determine

To find:

The number of faces, vertices and edges in the polyhedron and verify Euler’s equation.

Explanation

Approach:

A) Polyhedron

1) A polygon is a two dimensional shape form with more than two straight lines.

2) A polyhedron is a three-dimensional solid shape.

3) Each flat surface of a polyhedron is a polygon and is called a face.

4) The line segment where two faces of a polyhedron meet is called an edge.

5) The point where three or more edges of a polyhedron meet is called a vertex.

B) Euler’s Equation

A very important relationship between the number of vertices, faces and edges of solid shapes was discovered by a Swiss mathematician Leonard Euler.

It states V+FE=2.

Where, V=Number of vertices, F=number of faces, E=number of edges.

Calculation:

In the polyhedron EFGHIJK,

The number of vertices (V) =7(E, F, G, H, I, J, K)

Number of faces (F) =9(ΔEFJ,ΔKFG,ΔIEH,ΔJ

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-9.1 P-11ESect-9.1 P-12ESect-9.1 P-13ESect-9.1 P-14ESect-9.1 P-15ESect-9.1 P-16ESect-9.1 P-17ESect-9.1 P-18ESect-9.1 P-19ESect-9.1 P-20ESect-9.1 P-21ESect-9.1 P-22ESect-9.1 P-23ESect-9.1 P-24ESect-9.1 P-25ESect-9.1 P-26ESect-9.1 P-27ESect-9.1 P-28ESect-9.1 P-29ESect-9.1 P-30ESect-9.1 P-31ESect-9.1 P-32ESect-9.1 P-33ESect-9.1 P-34ESect-9.1 P-35ESect-9.1 P-36ESect-9.1 P-37ESect-9.1 P-38ESect-9.1 P-39ESect-9.1 P-40ESect-9.1 P-41ESect-9.1 P-42ESect-9.1 P-43ESect-9.1 P-44ESect-9.1 P-45ESect-9.1 P-46ESect-9.1 P-47ESect-9.2 P-1ESect-9.2 P-2ESect-9.2 P-3ESect-9.2 P-4ESect-9.2 P-5ESect-9.2 P-6ESect-9.2 P-7ESect-9.2 P-8ESect-9.2 P-9ESect-9.2 P-10ESect-9.2 P-11ESect-9.2 P-12ESect-9.2 P-13ESect-9.2 P-14ESect-9.2 P-15ESect-9.2 P-16ESect-9.2 P-17ESect-9.2 P-18ESect-9.2 P-19ESect-9.2 P-20ESect-9.2 P-21ESect-9.2 P-22ESect-9.2 P-23ESect-9.2 P-24ESect-9.2 P-25ESect-9.2 P-26ESect-9.2 P-27ESect-9.2 P-28ESect-9.2 P-29ESect-9.2 P-30ESect-9.2 P-31ESect-9.2 P-32ESect-9.2 P-33ESect-9.2 P-34ESect-9.2 P-35ESect-9.2 P-36ESect-9.2 P-37ESect-9.2 P-38ESect-9.2 P-39ESect-9.2 P-40ESect-9.2 P-41ESect-9.2 P-42ESect-9.2 P-43ESect-9.2 P-44ESect-9.2 P-45ESect-9.3 P-1ESect-9.3 P-2ESect-9.3 P-3ESect-9.3 P-4ESect-9.3 P-5ESect-9.3 P-6ESect-9.3 P-7ESect-9.3 P-8ESect-9.3 P-9ESect-9.3 P-10ESect-9.3 P-11ESect-9.3 P-12ESect-9.3 P-13ESect-9.3 P-14ESect-9.3 P-15ESect-9.3 P-16ESect-9.3 P-17ESect-9.3 P-18ESect-9.3 P-19ESect-9.3 P-20ESect-9.3 P-21ESect-9.3 P-22ESect-9.3 P-23ESect-9.3 P-24ESect-9.3 P-25ESect-9.3 P-26ESect-9.3 P-27ESect-9.3 P-28ESect-9.3 P-29ESect-9.3 P-30ESect-9.3 P-31ESect-9.3 P-32ESect-9.3 P-33ESect-9.3 P-34ESect-9.3 P-35ESect-9.3 P-36ESect-9.3 P-37ESect-9.3 P-38ESect-9.3 P-39ESect-9.3 P-40ESect-9.3 P-41ESect-9.3 P-42ESect-9.3 P-43ESect-9.3 P-44ESect-9.3 P-45ESect-9.3 P-46ESect-9.3 P-47ESect-9.3 P-48ESect-9.3 P-49ESect-9.4 P-1ESect-9.4 P-2ESect-9.4 P-3ESect-9.4 P-4ESect-9.4 P-5ESect-9.4 P-6ESect-9.4 P-7ESect-9.4 P-8ESect-9.4 P-9ESect-9.4 P-10ESect-9.4 P-11ESect-9.4 P-12ESect-9.4 P-13ESect-9.4 P-14ESect-9.4 P-15ESect-9.4 P-16ESect-9.4 P-17ESect-9.4 P-18ESect-9.4 P-19ESect-9.4 P-20ESect-9.4 P-21ESect-9.4 P-22ESect-9.4 P-23ESect-9.4 P-24ESect-9.4 P-25ESect-9.4 P-27ESect-9.4 P-28ESect-9.4 P-29ESect-9.4 P-30ESect-9.4 P-31ESect-9.4 P-32ESect-9.4 P-33ESect-9.4 P-34ESect-9.4 P-35ESect-9.4 P-36ESect-9.4 P-37ESect-9.4 P-38ESect-9.4 P-39ESect-9.4 P-40ESect-9.4 P-41ESect-9.4 P-42ESect-9.4 P-43ESect-9.4 P-44ESect-9.4 P-45ESect-9.4 P-46ESect-9.4 P-47ESect-9.4 P-48ESect-9.4 P-49ESect-9.4 P-50ESect-9.CR P-1CRSect-9.CR P-2CRSect-9.CR P-3CRSect-9.CR P-4CRSect-9.CR P-5CRSect-9.CR P-6CRSect-9.CR P-7CRSect-9.CR P-8CRSect-9.CR P-9CRSect-9.CR P-10CRSect-9.CR P-11CRSect-9.CR P-12CRSect-9.CR P-13CRSect-9.CR P-14CRSect-9.CR P-15CRSect-9.CR P-16CRSect-9.CR P-17CRSect-9.CR P-18CRSect-9.CR P-19CRSect-9.CR P-20CRSect-9.CR P-21CRSect-9.CR P-22CRSect-9.CR P-23CRSect-9.CR P-24CRSect-9.CR P-25CRSect-9.CR P-26CRSect-9.CR P-27CRSect-9.CR P-28CRSect-9.CR P-29CRSect-9.CR P-30CRSect-9.CR P-31CRSect-9.CR P-32CRSect-9.CT P-1CTSect-9.CT P-2CTSect-9.CT P-3CTSect-9.CT P-4CTSect-9.CT P-5CTSect-9.CT P-6CTSect-9.CT P-7CTSect-9.CT P-8CTSect-9.CT P-9CTSect-9.CT P-10CTSect-9.CT P-11CTSect-9.CT P-12CTSect-9.CT P-13CTSect-9.CT P-14CTSect-9.CT P-15CTSect-9.CT P-16CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Graph the following points: P(4,4),Q(4,4),R(3,0),S(4,0.5),T(0.5,2.5),U(2,0),V(4,4)

Finite Mathematics and Applied Calculus (MindTap Course List)

In Problems 7-12, find the third derivative.

Mathematical Applications for the Management, Life, and Social Sciences

In Exercises 69-74, rationalize the numerator. 69. 2x3

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Divide the following numbers. 18.

Contemporary Mathematics for Business & Consumers

The moment about the xz-plane of solid E whose density is ρ(x, y, z) = x is:

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: If f(x) is continuous and decreasing, f(n) = an for all n = 1, 2, 3, …, and

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Define extraneous variable and explain how extraneous variables can become confounding variables.

Research Methods for the Behavioral Sciences (MindTap Course List)