BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry for College St...

6th Edition
Daniel C. Alexander + 1 other
ISBN: 9781285195698
Textbook Problem
1 views

Suppose that a semicircular region with a vertical diameter of length 6 is rotated about that diameter. Determine the exact surface area and the exact volume of the resulting solid of revolution.

To determine

To find:

The surface area and volume of the solid.

Explanation

Approach:

A solid of revolution is obtained by rotating a plane region around a straight line lying on the same plane. The straight line is called the axis of revolution. It may be vertical, horizontal or oblique.

A sphere is a three dimensional solid figure, which is made up of all the points in space, which lie at a common distance, called the radius, from a fixed point called the center of the sphere. The surface area of a sphere S=4πr2, where r is the radius of the sphere.

All solid bodies occupy space. The measure of occupied space is called the volume of the object. Volume of a sphere V=43πr3.

Calculation:

Consider a semi circular region that is rotated about its vertical diameter. The resultant solid of revolution that is formed is a sphere, where diameter d=6.

Radius r=d2=62=3

Surface area of sphere S=4·π

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-9.1 P-11ESect-9.1 P-12ESect-9.1 P-13ESect-9.1 P-14ESect-9.1 P-15ESect-9.1 P-16ESect-9.1 P-17ESect-9.1 P-18ESect-9.1 P-19ESect-9.1 P-20ESect-9.1 P-21ESect-9.1 P-22ESect-9.1 P-23ESect-9.1 P-24ESect-9.1 P-25ESect-9.1 P-26ESect-9.1 P-27ESect-9.1 P-28ESect-9.1 P-29ESect-9.1 P-30ESect-9.1 P-31ESect-9.1 P-32ESect-9.1 P-33ESect-9.1 P-34ESect-9.1 P-35ESect-9.1 P-36ESect-9.1 P-37ESect-9.1 P-38ESect-9.1 P-39ESect-9.1 P-40ESect-9.1 P-41ESect-9.1 P-42ESect-9.1 P-43ESect-9.1 P-44ESect-9.1 P-45ESect-9.1 P-46ESect-9.1 P-47ESect-9.2 P-1ESect-9.2 P-2ESect-9.2 P-3ESect-9.2 P-4ESect-9.2 P-5ESect-9.2 P-6ESect-9.2 P-7ESect-9.2 P-8ESect-9.2 P-9ESect-9.2 P-10ESect-9.2 P-11ESect-9.2 P-12ESect-9.2 P-13ESect-9.2 P-14ESect-9.2 P-15ESect-9.2 P-16ESect-9.2 P-17ESect-9.2 P-18ESect-9.2 P-19ESect-9.2 P-20ESect-9.2 P-21ESect-9.2 P-22ESect-9.2 P-23ESect-9.2 P-24ESect-9.2 P-25ESect-9.2 P-26ESect-9.2 P-27ESect-9.2 P-28ESect-9.2 P-29ESect-9.2 P-30ESect-9.2 P-31ESect-9.2 P-32ESect-9.2 P-33ESect-9.2 P-34ESect-9.2 P-35ESect-9.2 P-36ESect-9.2 P-37ESect-9.2 P-38ESect-9.2 P-39ESect-9.2 P-40ESect-9.2 P-41ESect-9.2 P-42ESect-9.2 P-43ESect-9.2 P-44ESect-9.2 P-45ESect-9.3 P-1ESect-9.3 P-2ESect-9.3 P-3ESect-9.3 P-4ESect-9.3 P-5ESect-9.3 P-6ESect-9.3 P-7ESect-9.3 P-8ESect-9.3 P-9ESect-9.3 P-10ESect-9.3 P-11ESect-9.3 P-12ESect-9.3 P-13ESect-9.3 P-14ESect-9.3 P-15ESect-9.3 P-16ESect-9.3 P-17ESect-9.3 P-18ESect-9.3 P-19ESect-9.3 P-20ESect-9.3 P-21ESect-9.3 P-22ESect-9.3 P-23ESect-9.3 P-24ESect-9.3 P-25ESect-9.3 P-26ESect-9.3 P-27ESect-9.3 P-28ESect-9.3 P-29ESect-9.3 P-30ESect-9.3 P-31ESect-9.3 P-32ESect-9.3 P-33ESect-9.3 P-34ESect-9.3 P-35ESect-9.3 P-36ESect-9.3 P-37ESect-9.3 P-38ESect-9.3 P-39ESect-9.3 P-40ESect-9.3 P-41ESect-9.3 P-42ESect-9.3 P-43ESect-9.3 P-44ESect-9.3 P-45ESect-9.3 P-46ESect-9.3 P-47ESect-9.3 P-48ESect-9.3 P-49ESect-9.4 P-1ESect-9.4 P-2ESect-9.4 P-3ESect-9.4 P-4ESect-9.4 P-5ESect-9.4 P-6ESect-9.4 P-7ESect-9.4 P-8ESect-9.4 P-9ESect-9.4 P-10ESect-9.4 P-11ESect-9.4 P-12ESect-9.4 P-13ESect-9.4 P-14ESect-9.4 P-15ESect-9.4 P-16ESect-9.4 P-17ESect-9.4 P-18ESect-9.4 P-19ESect-9.4 P-20ESect-9.4 P-21ESect-9.4 P-22ESect-9.4 P-23ESect-9.4 P-24ESect-9.4 P-25ESect-9.4 P-27ESect-9.4 P-28ESect-9.4 P-29ESect-9.4 P-30ESect-9.4 P-31ESect-9.4 P-32ESect-9.4 P-33ESect-9.4 P-34ESect-9.4 P-35ESect-9.4 P-36ESect-9.4 P-37ESect-9.4 P-38ESect-9.4 P-39ESect-9.4 P-40ESect-9.4 P-41ESect-9.4 P-42ESect-9.4 P-43ESect-9.4 P-44ESect-9.4 P-45ESect-9.4 P-46ESect-9.4 P-47ESect-9.4 P-48ESect-9.4 P-49ESect-9.4 P-50ESect-9.CR P-1CRSect-9.CR P-2CRSect-9.CR P-3CRSect-9.CR P-4CRSect-9.CR P-5CRSect-9.CR P-6CRSect-9.CR P-7CRSect-9.CR P-8CRSect-9.CR P-9CRSect-9.CR P-10CRSect-9.CR P-11CRSect-9.CR P-12CRSect-9.CR P-13CRSect-9.CR P-14CRSect-9.CR P-15CRSect-9.CR P-16CRSect-9.CR P-17CRSect-9.CR P-18CRSect-9.CR P-19CRSect-9.CR P-20CRSect-9.CR P-21CRSect-9.CR P-22CRSect-9.CR P-23CRSect-9.CR P-24CRSect-9.CR P-25CRSect-9.CR P-26CRSect-9.CR P-27CRSect-9.CR P-28CRSect-9.CR P-29CRSect-9.CR P-30CRSect-9.CR P-31CRSect-9.CR P-32CRSect-9.CT P-1CTSect-9.CT P-2CTSect-9.CT P-3CTSect-9.CT P-4CTSect-9.CT P-5CTSect-9.CT P-6CTSect-9.CT P-7CTSect-9.CT P-8CTSect-9.CT P-9CTSect-9.CT P-10CTSect-9.CT P-11CTSect-9.CT P-12CTSect-9.CT P-13CTSect-9.CT P-14CTSect-9.CT P-15CTSect-9.CT P-16CT

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Evaluate the expression sin Exercises 116. 23

Finite Mathematics and Applied Calculus (MindTap Course List)

In Exercises 73-78, suppose that a and b are real numbers other than zero and that a b. State whether the ineq...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate the integral. 0/2sin7cos5d

Calculus (MindTap Course List)

The slope of the tangent line to y = x3 at x = 2 is: 18 12 6 0

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

If f(x) = sin 2x, an upper bound for |f(n + 1)(x)| is 2 2n 2n + 1 22n

Study Guide for Stewart's Multivariable Calculus, 8th