For every integer m ≥ 0 , ∑ i = 0 n ( − 1 ) i ( i m ) 2 n − i = 1.
To prove the that for every integer m≥0 ,
∑i=0m(−1)i(mi)2m−i=1.
Given:
The integer m≥0.
Formula used:
Binomial theorem:
(a−b)n=( n 0 )an(−b)0+( n 1 )an−1(−b)1+( n 2 )an−2(−b)2+( n 3 )an−3(−b)3 +.........+( n n−1 )a1(−b)n−1+( n n )a0(−b)n
Proof:
1=2−11m=[2−</
Check out a sample textbook solution.
Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!