BuyFindarrow_forward

Elementary Geometry For College St...

7th Edition
Alexander + 2 others
ISBN: 9781337614085

Solutions

Chapter
Section
BuyFindarrow_forward

Elementary Geometry For College St...

7th Edition
Alexander + 2 others
ISBN: 9781337614085
Textbook Problem

Of several line segments, A B > C D ( the length of segment AB is greater than that of segment CD), C D > E F , E F > G H and G H > I J . What conclusion does the Transitive Property of Inequality allow regarding IJ and AB?

To determine

To find:

To write the conclusion about the Transitive Property of Inequality allow regarding IJ and AB by using the given condiiton,

Explanation

Consider the following condition,

“Of several line segments, AB>CD (the length of segment AB is greater than that of segment CD), CD>EF, EF>GH and GH>IJ.”

Definition:

If a is less than b a<b if and only if there is a positive number p for which

a+p=b;

a is greater than b a>b if and only if b<a.

Transitive Property of Inequality:

For number a, b, and c, if a<b and b<c, then a<c.

First AB>CD or CD<AB then by using the definition to get CD+p1=AB...(1)

Then, CD>EF or EF<CD then by using the definition to get EF+p2=CD ...(2)

Then EF>GH or GH<EF then by using the definition to get GH+p3=EF...(3)

Then GH>IJ or IJ<GH then by using the definition to get IJ+p4=GH ...(3)

Substitute (3) in (4) to get the following,

GH+p3=EFIJ+(p4+p3)=EF

Substitute the above equaiton in equation (2) to get the following,

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started
Sect-A.1 P-11ESect-A.1 P-12ESect-A.1 P-13ESect-A.1 P-14ESect-A.1 P-15ESect-A.1 P-16ESect-A.1 P-17ESect-A.1 P-18ESect-A.1 P-19ESect-A.1 P-20ESect-A.1 P-21ESect-A.1 P-22ESect-A.1 P-23ESect-A.1 P-24ESect-A.1 P-25ESect-A.1 P-26ESect-A.1 P-27ESect-A.1 P-28ESect-A.1 P-29ESect-A.1 P-30ESect-A.2 P-1ESect-A.2 P-2ESect-A.2 P-3ESect-A.2 P-4ESect-A.2 P-5ESect-A.2 P-6ESect-A.2 P-7ESect-A.2 P-8ESect-A.2 P-9ESect-A.2 P-10ESect-A.2 P-11ESect-A.2 P-12ESect-A.2 P-13ESect-A.2 P-14ESect-A.2 P-15ESect-A.2 P-16ESect-A.2 P-17ESect-A.2 P-18ESect-A.2 P-19ESect-A.2 P-20ESect-A.2 P-21ESect-A.2 P-22ESect-A.2 P-23ESect-A.2 P-24ESect-A.2 P-25ESect-A.2 P-26ESect-A.2 P-27ESect-A.2 P-28ESect-A.2 P-29ESect-A.2 P-30ESect-A.2 P-31ESect-A.2 P-32ESect-A.2 P-33ESect-A.2 P-34ESect-A.2 P-35ESect-A.2 P-36ESect-A.3 P-1ESect-A.3 P-2ESect-A.3 P-3ESect-A.3 P-4ESect-A.3 P-5ESect-A.3 P-6ESect-A.3 P-7ESect-A.3 P-8ESect-A.3 P-9ESect-A.3 P-10ESect-A.3 P-11ESect-A.3 P-12ESect-A.3 P-13ESect-A.3 P-14ESect-A.3 P-15ESect-A.3 P-16ESect-A.3 P-17ESect-A.3 P-18ESect-A.3 P-19ESect-A.3 P-20ESect-A.3 P-21ESect-A.3 P-22ESect-A.3 P-23ESect-A.3 P-24ESect-A.3 P-25ESect-A.3 P-26ESect-A.3 P-27ESect-A.3 P-28ESect-A.3 P-29ESect-A.3 P-30ESect-A.3 P-31ESect-A.3 P-32ESect-A.4 P-1ESect-A.4 P-2ESect-A.4 P-3ESect-A.4 P-4ESect-A.4 P-5ESect-A.4 P-6ESect-A.4 P-7ESect-A.4 P-8ESect-A.4 P-9ESect-A.4 P-10ESect-A.4 P-11ESect-A.4 P-12ESect-A.4 P-13ESect-A.4 P-14ESect-A.4 P-15ESect-A.4 P-16ESect-A.4 P-17ESect-A.4 P-18ESect-A.4 P-19ESect-A.4 P-20ESect-A.4 P-21ESect-A.4 P-22ESect-A.4 P-23ESect-A.4 P-24ESect-A.4 P-25ESect-A.4 P-26ESect-A.4 P-27ESect-A.4 P-28ESect-A.4 P-29ESect-A.4 P-30ESect-A.4 P-31ESect-A.4 P-32ESect-A.4 P-33ESect-A.4 P-34ESect-A.4 P-35ESect-A.4 P-36ESect-A.4 P-37ESect-A.4 P-38ESect-A.4 P-39ESect-A.4 P-40ESect-A.4 P-41ESect-A.5 P-1ESect-A.5 P-2ESect-A.5 P-3ESect-A.5 P-4ESect-A.5 P-5ESect-A.5 P-6ESect-A.5 P-7ESect-A.5 P-8ESect-A.5 P-9ESect-A.5 P-10ESect-A.5 P-11ESect-A.5 P-12ESect-A.5 P-13ESect-A.5 P-14ESect-A.5 P-15ESect-A.5 P-16ESect-A.5 P-17ESect-A.5 P-18ESect-A.5 P-19ESect-A.5 P-20ESect-A.5 P-21ESect-A.5 P-22ESect-A.5 P-23ESect-A.5 P-24ESect-A.5 P-25ESect-A.5 P-26ESect-A.5 P-27ESect-A.5 P-28ESect-A.5 P-29ESect-A.5 P-30ESect-A.5 P-31ESect-A.5 P-32ESect-A.5 P-33ESect-A.5 P-34ESect-A.5 P-35ESect-A.5 P-36ESect-A.5 P-37ESect-A.5 P-38ESect-A.5 P-39E

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

SAFE Drivers The fatality rate in the United States (per 100 million miles traveled) by age of driver (in years...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate each expression: 4+232

Elementary Technical Mathematics

Evaluate the integral. 26. x2(3+4x4x2)3/2dx

Calculus: Early Transcendentals

Evaluate the integral. 12(1x24x3)dx

Single Variable Calculus: Early Transcendentals, Volume I

Find the value of k such that (k,k) is equidistant from (1,0) and (0,2).

Finite Mathematics and Applied Calculus (MindTap Course List)

Find the derivative of the function. h(t) = (t + 1)2/3 (2t2 1)3

Single Variable Calculus: Early Transcendentals

0 1 2 ∞

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th