
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
11.32 A Y-D ideal three-phase transformer with a turns ratio of
1 : 10 supplies a 32 kVA load at a line voltage of 208 V. Determine
the line voltage and line current at the primary side
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Similar questions
- Consider the three single-phase two-winding transformers shown in Figure 3.37. The high-voltage windings are connected in Y. (a) For the low-voltage side, connect the windings in , place the polarity marks, and label the terminals a, b, and c in accordance with the American standard. (b) Relabel the terminals a, b, and c such that VAN is 90 out of phase with Va for positive sequence.arrow_forwardThe ratings of a three-phase three-winding transformer are Primary(1): Y connected 66kV,15MVA Secondary (2): Y connected, 13.2kV,10MVA Tertiary (3): A connected, 2.3kV,5MVA Neglecting winding resistances and exciting current, the per-unit leakage reactances are X12=0.08 on a 15-MVA,66-kV base X13=0.10 on a 15-MVA,66-kV base X23=0.09 on a 10-MVA,13.2-kV base (a) Determine the per-unit reactances X1,X2,X3 of the equivalent circuit on a 15-MVA,66-kV base at the primary terminals. (b) Purely resistive loads of 7.5 MW at 13.2 kV and 5 MW at 2.3kV are connected to the secondary and tertiary sides of the transformer, respectively. Draw the per- unit impedance diagram, showing the per-unit impedances on a 15-MVA,66-kV base at the primary terminals.arrow_forward(a) An ideal single-phase two-winding transformer with turns ratio at=N1/N2 is connected with a series impedance Z2 across winding 2. If one wants to replace Z2, with a series impedance Z1 across winding 1 and keep the terminal behavior of the two circuits to be identical, find Z1 in terms of Z2. (b) Would the above result be true if instead of a series impedance there is a shunt impedance? (c) Can one refer a ladder network on the secondary (2) side to the primary (1) side simply by multiplying every impedance byat2 ?arrow_forward
- In developing per-unit equivalent circuits for three-phase transformers. under balanced three-phase operation. (i) A common Sbase is selected for both the H and X terminals. (ii) The ratio of the voltage bases Vbase/VbaseX is selected to be equal to the ratio of the rated line-to-line voltages VratedHLL/VratedXLL. (a) Only one of the above is true. (b) Neither is true. (C) Both statements are true.arrow_forwardAn infinite bus, which is a constant voltage source, is connected to the primary of the three-winding transformer of Problem 3.53. A 7.5-MVA,13.2-kV synchronous motor with a sub transient reactance of 0.2 per unit is connected to the transformer secondary. A5-MW,2.3-kV three-phase resistive load is connected to the tertiary Choosing a base of 66 kV and 15 MVA in the primary, draw the impedance diagram of the system showing per-unit impedances. Neglect transformer exciting current, phase shifts, and all resistances except the resistive load.arrow_forwardA bank of three single-phase transformers, each rated 30MVA,38.1/3.81kV, are connected in Y- with a balanced load of three 1, Y-connected resistors. Choosing a base of 90MVA,66kV for the high-voltage side of the three-phase transformer. spify the base for the low-voltage side. Compute the per-unit resistance of the load on the base for the low-voltage side. Also, determine the load resistance in ohms referred to the high-voltage side and the per-unit value on the chosen base.arrow_forward
- A three-phase transformer bank is connected wye–delta. The primary voltage is 12,470 V, and the secondary voltage is 480 V. The total capacity of the transformer bank is 450 kVA. One of the three transformers that form the three-phase bank develops a shorted primary winding and becomes unusable. A suggestion is made to reconnect the bank for operation as an open-delta. Can the two remaining transformers be connected open-delta? Explain your answer as to why they can or why they cannot be connected as an open-delta. If they can be reconnected open-delta, what would be the output capacity of the two remaining transformers?arrow_forwardIn a 25kVA single phase transformer the core loss and full load copper losses are respectively 320 and 380 Watts. A) What is the efficiency at half load and 0.866 power factor lagging? B) Determine the load in kVA in which the efficiency is maximum.arrow_forwardTwo 100-kW, single-phase transformers are connected in parallel both on the primary and secondary. One transformer has an ohmic drop of 0.5% at full-load and an inductive drop of 8% at full-load current. The other has an ohmic drop of 0.75% and an inductive drop of 2%. Show how they will share a load of 180 kW at 0.9 p.f.arrow_forward
- Three 1-phase, 41 kVA, 2400 V/ 277 V, 60HZ Transformers are connected to form a 3-phase 4160 V/ 480 V transformer bank. The equivalent impedance of each transformer referred to high voltage side is 2.0 + j 4.0. The low voltage side of the 3- phase transformer bank is connected to a DELTA connected load 10.0 +j 1.0 ohms. Find the Voltage Regulation is %. Enter your answer to 2 decimal places.arrow_forwardTwo 100-kW, single-phase transformers are connected in parallel both on the primary and secondary. One transformer has an ohmic drop of O.5% at full-load and an inductive drop of 8% at full-load current. The other has an ohmic drop of 0.75% and inductive drop of 2%. Show how they share a load of 180 kW at 0.9 power factor.arrow_forwardYou are working in an industrial plant. A three-phase transformer bank is connected wye–delta. The primary voltage is 12,470 V, and the secondary voltage is 480 V. The total capacity of the transformer bank is 450 kVA. One of the three transformers that form the three-phase bank develops a shorted primary winding and becomes unusable. A suggestion is made to reconnect the bank for operation as an open-delta. Can the two remaining transformers be connected open-delta? Explain your answer as to why they can or why they cannot be connected as an open-delta. If they can be reconnected open-delta, what would be the output capacity of the two remaining transformers?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning