A 1-kilogram mass is attached to a spring whose constant is 16 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the in- stantaneous velocity. Determine the equations of motion if (a) the mass is initially released from rest from a point 1 meter below the equilibrium position, and then (b) the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 12 m/s.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter6: Vector Spaces
Section6.7: Applications
Problem 18EQ
icon
Related questions
Question

Hi can you help me to solve the probliem in the image?

A l-kilogram mass is attached to a spring whose constant is
16 N/m, and the entire system is then submerged in a liquid that
imparts a damping force numerically equal to 10 times the in-
stantaneous velocity. Determine the equations of motion if
(a) the mass is initially released from rest from a point 1
meter below the equilibrium position, and then
(b) the mass is initially released from a point 1 meter below
the equilibrium position with an upward velocity of 12 m/s.
Transcribed Image Text:A l-kilogram mass is attached to a spring whose constant is 16 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the in- stantaneous velocity. Determine the equations of motion if (a) the mass is initially released from rest from a point 1 meter below the equilibrium position, and then (b) the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 12 m/s.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning