(a) The gap between two horizontal plates is 5 mm. The gap is filled with oil of a relative density of 0.88 and a kinematic viscosity of 5 x 104 m²/s. What is the shear stress required to slide the upper plate at a speed of 2.5 m/s over the bottom plate? (b) Seawater of density 1025 kg/m³ and viscosity of 8.9 x 104 Pa-s is flowing through a pipe of 100 mm diameter at a rate of 3.6 litres/minute. Calculate the Reynolds number and state whether the flow is laminar or turbulent. (c) A jet of water with a diameter of 100 mm flows vertically until it meets a solid vane that deflected it at an angle of 180°. The initial velocity of the jet is 20 m/s. As a result of friction, the velocity of the jet leaving the vane is 15 m/s. Assuming the fluid is at atmospheric pressure throughout and neglecting the gravity effects, calculate the magnitude of the force exerted by the water on the vane. (water density 1000 kg/m³)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
(a) The gap between two horizontal plates is 5 mm. The gap is filled with oil of a relative density
of 0.88 and a kinematic viscosity of 5 x 104 m?/s. What is the shear stress required to slide
the upper plate at a speed of 2.5 m/s over the bottom plate?
(b) Seawater of density 1025 kg/m³ and viscosity of 8.9 x 104 Pa-s is flowing through a pipe of
100 mm diameter at a rate of 3.6 litres/minute. Calculate the Reynolds number and state
whether the flow is laminar or turbulent.
(c) A jet of water with a diameter of 100 mm flows vertically until it meets a solid vane that
deflected it at an angle of 180°. The initial velocity of the jet is 20 m/s. As a result of friction,
the velocity of the jet leaving the vane is 15 m/s. Assuming the fluid is at atmospheric
pressure throughout and neglecting the gravity effects, calculate the magnitude of the force
exerted by the water on the vane. (water density 1000 kg/m³)
Transcribed Image Text:(a) The gap between two horizontal plates is 5 mm. The gap is filled with oil of a relative density of 0.88 and a kinematic viscosity of 5 x 104 m?/s. What is the shear stress required to slide the upper plate at a speed of 2.5 m/s over the bottom plate? (b) Seawater of density 1025 kg/m³ and viscosity of 8.9 x 104 Pa-s is flowing through a pipe of 100 mm diameter at a rate of 3.6 litres/minute. Calculate the Reynolds number and state whether the flow is laminar or turbulent. (c) A jet of water with a diameter of 100 mm flows vertically until it meets a solid vane that deflected it at an angle of 180°. The initial velocity of the jet is 20 m/s. As a result of friction, the velocity of the jet leaving the vane is 15 m/s. Assuming the fluid is at atmospheric pressure throughout and neglecting the gravity effects, calculate the magnitude of the force exerted by the water on the vane. (water density 1000 kg/m³)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Design of Power Transmission Elements and Power Transmission Systems
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY