(B) A maintenance man (climber) tries to maintain one of the power stations located at the top of the mountain in the situation of winter. During his work and by mistake drops his water bottle which then slides 100 M down the side of a steep icy slope to a point which is 10 m lower than the climber's position. The mass of the climber is 60 kg and his water bottle has a mass of 500 g. 1) If the bottle starts from rest, how fast is it travelling by the time it reaches the bottom of the slope? (Neglect friction.) What is the total change in the climber's potential energy as she climbs down the mountain to fetch her fallen water bottle? i.e. what is the difference between her potential energy at the top of the slope and the bottom of the slope? Analysis all the above situation.

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter7: Work And Kinetic Energy
Section: Chapter Questions
Problem 94AP: You are driving your car on a straight road with a coefficient of friction between the tires and the...
icon
Related questions
Topic Video
Question

(B) A maintenance man (climber) tries to maintain one of the power stations located at the
top of the mountain in the situation of winter. During his work and by mistake drops his
water bottle which then slides 100 M down the side of a steep icy slope to a point which is
10 m lower than the climber's position. The mass of the climber is 60 kg and his water bottle
has a mass of 500 g.
1) If the bottle starts from rest, how fast is it travelling by the time it reaches the bottom
of the slope? (Neglect friction.)
What is the total change in the climber's potential energy as she climbs down the mountain
to fetch her fallen water bottle? i.e. what is the difference between her potential energy at
the top of the slope and the bottom of the slope? Analysis all the above situation.

(B) A maintenance man (climber) tries to maintain one of the power stations located at the
top of the mountain in the situation of winter. During his work and by mistake drops his
water bottle which then slides 100 M down the side of a steep icy slope to a point which is
10 m lower than the climber's position. The mass of the climber is 60 kg and his water bottle
has a mass of 500 g.
1) If the bottle starts from rest, how fast is it travelling by the time it reaches the bottom
of the slope? (Neglect friction.)
What is the total change in the climber's potential energy as she climbs down the mountain
to fetch her fallen water bottle? i.e. what is the difference between her potential energy at
the top of the slope and the bottom of the slope? Analysis all the above situation.
Transcribed Image Text:(B) A maintenance man (climber) tries to maintain one of the power stations located at the top of the mountain in the situation of winter. During his work and by mistake drops his water bottle which then slides 100 M down the side of a steep icy slope to a point which is 10 m lower than the climber's position. The mass of the climber is 60 kg and his water bottle has a mass of 500 g. 1) If the bottle starts from rest, how fast is it travelling by the time it reaches the bottom of the slope? (Neglect friction.) What is the total change in the climber's potential energy as she climbs down the mountain to fetch her fallen water bottle? i.e. what is the difference between her potential energy at the top of the slope and the bottom of the slope? Analysis all the above situation.
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning