Consider the problem of how plants might lift water from ground level to their leaves. Assume that there us a semipermeable membrane at the roots, with pure water on the outside, and an ideal solution inside a small cylindrical capillary inside the plant. The solute mole fraction inside the capillary is x = 0.001. The radius of the capillary is 0.1 mm. Assuming the density of the solution = 1 g/mL, what is the height of the solution at 298 K? Can osmotic pressure account for raising this water?

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Consider the problem of how plants might lift water from ground level to their leaves.
Assume that there us a semipermeable membrane at the roots, with pure water on
the outside, and an ideal solution inside a small cylindrical capillary inside the plant.
The solute mole fraction inside the capillary is x = 0.001. The radius of the capillary
is 0.1 mm. Assuming the density of the solution = 1 g/mL, what is the height of the
solution at 298 K? Can osmotic pressure account for raising this water?
Transcribed Image Text:Consider the problem of how plants might lift water from ground level to their leaves. Assume that there us a semipermeable membrane at the roots, with pure water on the outside, and an ideal solution inside a small cylindrical capillary inside the plant. The solute mole fraction inside the capillary is x = 0.001. The radius of the capillary is 0.1 mm. Assuming the density of the solution = 1 g/mL, what is the height of the solution at 298 K? Can osmotic pressure account for raising this water?
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The