
Suppose you are gambling on a roulette wheel. Each time the wheel is spun, the result is one of the outcomes 0, 1, and so on through 36. Of these outcomes, 18 are red, 18 are black, and 1 is green. On each spin you bet $5 that a red outcome will occur and $1 that the green outcome will occur. If red occurs, you win a net $4. (You win $10 from red and nothing from green.) If green occurs, you win a net $24. (You win $30 from green and nothing from red.) If black occurs, you lose everything you bet for a loss of $6.
a. Use simulation to generate 1,000 plays from this strategy. Each play should indicate the net amount won or lost. Then, based on these outcomes, calculate a 95% confidence interval for the total net amount won or lost from 1,000 plays of the game. (Round your answers to two decimal places and if your answer is negative value, enter "minus" sign.) I worked out the Upper Limit, but I can't seem to arrive at the correct answer for the Lower Limit. What is the Lower Limit?
Lower Limit = | |
Upper Limit = | -0.03 |

Step by stepSolved in 2 steps with 2 images

- Suppose you are gambling on a roulette wheel. Each time the wheel is spun, the result is one of the outcomes 0, 1, and so on through 36. Of these outcomes, 18 are red, 18 are black, and 1 is green. On each spin you bet $5 that a red outcome will occur and $1 that the green outcome will occur. If red occurs, you win a net $4. (You win $10 from red and nothing from green.) If green occurs, you win a net $24. (You win $30 from green and nothing from red.) If black occurs, you lose everything you bet for a loss of $6. a. Use simulation to generate 1,000 plays from this strategy. Each play should indicate the net amount won or lost. Then, based on these outcomes, calculate a 95% confidence interval for the total net amount won or lost from 1,000 plays of the game. (Round your answers to two decimal places and if your answer is negative value, enter "minus" sign.) Lower Limit Upper Limitarrow_forwardSuppose that you and a friend are playing cards and decide to make a bet. If your friend draws two spades in succession from a standard deck of 52 cards replacing the first card, you give him $50. Otherwise, he pays you $10. If the same bet was made 30 times, how much would you expect to win or lose? Round your answer to the nearest cent, if necessary.arrow_forwardSuppose you decided to play a gambling game. In order to play the game there is a $1.50 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.50). If you roll a 4 or 5, you win $3.50 (i.e., your net profit is $2.00). If you roll a 6 you win $5.00 (i.e., your net profit is $3.50).Use the information described above to construct a probability distribution table for the random variable xx which represents the net profit of your winnings. Note: Be sure to enter your probabilities as reduced fractions. Die Roll xx P(x) Roll a 1, 2, or 3 Roll a 4 or 5 Roll a 6 Find the amount you would expect to win or lose each time you played the game. Round your final answer to two decimal places.μ=arrow_forward
- Suppose you decided to play a gambling game. In order to play the game there is a $1.50 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.5 dollars). If you roll a 4 or 5, you win $2.50 (i.e., your net profit is $1). If you roll a 6 you win $5.75 (i.e., your net profit is $4.25).a) Use the information described above to constuct a probability distribution table for the random variable xx which represents the net profit of your winnings. Note: Be sure to enter your probabilities as reduced fractions. xx P(x)P(x) (You roll a 1,2,or 3) (You roll a 1,2, or 3) (You roll a 4 or 5) (You roll a 4 or 5) (You roll a 6) (You roll a 6) b) Find the amount you would expect to win or lose each time you played the game. Round your final answer to two decimal places.μ=arrow_forwardYou are offered a gamble on the toss of a coin. If the coin shows tails, you lose $100. If the coin shows heads, you win $150. Would you accept it?arrow_forwardYour friend offers to place a bet with you. He will pay you $2 if your favorite sports team wins the game on Tuesday night. But you will pay him $3 if his team wins. Your team has an 55% chance of winning, whereas his only has a 45% chance. This bet is in your favor. True or False?arrow_forward
- A new game is being introduced at the Hard Rock Cafe. A ball is spun around a wheel until it comes to rest in one of many spots. Whatever is listed in that spot will be the player's winnings. If the wheel has 8 spots labeled $1, 16 spots labeled $2, and 1 spots labeled $10, how much should a player expect to win on average?arrow_forwardYou are playing a game in which a single die is rolled. If a 2 or a 5 come up, you win $60; otherwise, you lose $3. What is the price that you should pay to play the game that would make the game fair?arrow_forwardJames placed a $25 bet on a red and a $5 bet on the number 33 (which is black) on a standard 00 roulette wheel. -if the ball lands in a red space, he wins $25 on his 'red' but loses $5 on his '33' bet - so he wins $20 -if the ball lands the number 33, he loses $25 on his 'red' bet but wins $175 on his '33' bet: He wins $150 -if the ball lands on a spae that isn't red and isnt 33 he loses both bets, so he loses $30 So for each spin; he either wins $150, wins $20, or loses $30 -probability that he wins $150 is 1/38 or .0263 -probability that he wins $20 is 18/38 or .4737 -probability that he loses $30 is 19/38 or .5000 let X = the profit that james makes on the next spin x P (X=x) x*P(X=x) x^2*P(X=x) 150 .0263 3.945 591.75 20 .4737 9.474 189.48 -30 .5000 -15.000 450.00 sum (sigma) 1.000 -1.581 1231.23 u (expected value)= -$1.581 variance = 1228.73044 standard deviation = 35.053 FILL IN THE BLANK if you play 2500 times, and Let, x (x bar)= the mean winnings (or…arrow_forward
- You are playing a game in which a single die is rolled. If a 2 or a 5 comes up, you win $60; otherwise, you lose $3. What is the price that you should pay to play the game that would make the game fair?arrow_forwardIn a gambling game, a woman is paid $5 if she draws a jack, a three, or a six and $6 if she draws a two, an ace, or a ten from an ordinary deck of 52 playing cards. If she draws any other card, she loses. How much should she pay to play if the game is fair? If the game is fair, the woman should play $ to play. (Type an integer or a decimal. Round to the nearest cent as needed.)arrow_forwardIn a card game, there are 15 cards laid out on a table. 6 of the cards are blank, 2 of the cards are labeled $3, and the remaining cards are labeled $1. When you select a card at random, you earn what is labeled on the card. After each game, you return the card and the cards are shuffled. Suppose you play this game 10 times. How much money can you expect to gain? Round to the nearest cent. Do not round until the final answer.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





