
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
The 4-story building has a floor dead load D = 80 psf, floor live load , L = 100 psf, roof dead load
Dr = 40 psf, roof live load Lr = 60 psf, and snow load S = 50 psf. The length of columns is 18 ft
and the column ends are pins (Lx = Ly = 18 ft).
1) Determine Pu on interior columns B2-4 and B2-1
2) Use Table 4-1a (pg 4-12 to 4-24) in AISC to select the lightest W shapes for these columns
3) Use Table 4-4 (pg 4-69 to 4-83) in AISC to select lightest square HSS shape for the columns.

Transcribed Image Text:The 4-story building has a floor dead load D = 80 psf, floor live load, L = 100 psf, roof dead load
Dr = 40 psf, roof live load Lr = 60 psf, and snow load S = 50 psf. The length of columns is 18 ft
and the column ends are pins (Lx = Ly = 18 ft).
1) Determine Pu on interior columns B2-4 and B2-1
2) Use Table 4-1a (pg 4-12 to 4-24) in AISC to select the lightest W shapes for these columns
3) Use Table 4-4 (pg 4-69 to 4-83) in AISC to select lightest square HSS shape for the columns.
27 ft
27 ft A
27 ft
27 ft
Column B2-1
Column B2-4
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Similar questions
- The 4-story building shown below has a dead load D = 90 psf, floor live load, L = 110 psf. The roof and floors have the same D and L loads. The length of columns is 24 ft at the ground level and 12 ft for all other floors. The column ends are pins (Kx = Ky = 1.0) and Lx = Ly for all columns. Determine Pu on interior columns B2-4, B2-1, and side column C1-1 (Use LFRD where applicable).arrow_forwardThe 4-story building shown below has a dead load D = 90 psf, floor live load, L = 110 psf. The roof and floors have the same D and L loads. The length of columns is 24 ft at the ground level and 12 ft for all other floors. The column ends are pins (Kx = Ky = 1.0) and Lx = Ly for all columns. (Use LFRD Method where applicable).1) Determine Pu on interior columns B2-4, B2-1, and side column C1-1 2) Use Table 4-1a (p. 4-12 to 4-24) in AISC to select the lightest W shapes for these columns 3) Use Table 4-4 (p. 4-68 to 4-83) in AISC to select lightest square HSS shape for the columnsarrow_forwardDesign a typical girder for the floor system shown in the figure below. In addition to the weight of the beam, the dead load consists of a 5-inch-thick reinforced concrete slab (normal-weight concrete). The live load is 85 psf, and there is a 20-psf partition load. Do not check deflections. Assume that the girder is supporting beams on each side, and assume that the beams weigh 35 lb / ft. Let all the loads on the girder act as a uniform load (be sure to include the weight of the beams). 30' A -4 @ 5' = 20' Use the table below. - Mn (ft-kips) Mn/ (ft-kips) | Vn (kips) Vn/v (kips) Shape W21 × 48 398 265 216 144 W12 × 58 324 216 132 87.8 W16 × 45 309 205 167 111 W18 × 40 294 196 169 113 a. Use LRFD. Calculate the required moment strength and the maximum shear. (Express your answers to three significant figures.) Mu - Vu Select a shape: -Select- b. Use ASD. ft-kips kips Calculate the required moment strength and the maximum shear. (Express your answers to three significant figures.) Ma =…arrow_forward
- A W1422 acts compositely with a 4-inch-thick floor slab whose effective width b is 90 inches. The beams are spaced at 7 feet 6 inches, and the span length is 30 feet. The superimposed loads are as follows: construction load = 20 psf, partition load = 10 psf, weight of ceiling and light fixtures = 5 psf, and live load = 60 psf, A992 steel is used, and fc=4 ksi. Determine whether the flexural strength is adequate. a. Use LRFD. b. Use ASD.arrow_forwardA beam must be designed to the following specifications: Span length = 35 ft Beam spacing = 10 ft 2-in. deck with 3 in. of lightweight concrete fill (wc=115 pcf) for a total depth of t=5 in. Total weight of deck and slab = 51 psf Construction load = 20 psf Partition load = 20 psf Miscellaneous dead load = 10 psf Live load = 80 psf Fy=50 ksi, fc=4 ksi Assume continuous lateral support and use LRFD. a. Design a noncomposite beam. Compute the total deflection (there is no limit to be checked). b. Design a composite beam and specify the size and number of stud anchors required. Assume one stud at each beam location. Compute the maximum total deflection as follows: 1. Use the transformed section. 2. Use the lower-bound moment of inertia.arrow_forwardIf the beam in Problem 5.5-9 i5 braced at A, B, and C, compute for the unbr Cb aced length AC (same as Cb for unbraced length CB). Do not include the beam weight in the loading. a. Use the unfactored service loads. b. Use factored loads.arrow_forward
- Use the composite beam tables and select a W-shape and stud anchors for the following conditions: Span length = 18 6 Beam spacing = 9 ft Total slab thickness = 51 2 in. (the slab and deck combination weighs 57 psf). Lightweight concrete with a unit weight of 115 pcf is used Construction load = 20 psf Partition load = 20 psf Live load = 225 psf Fy=50 ksi and fc=4 ksi A cross section of the formed steel deck is shown in Figure P9.8-9. The maximum live-load deflection cannot exceed L/360 (use a lower-bound moment of inertia). a. Use LRFD. b. User ASD.arrow_forwardDetermine the smallest value of yield stress Fy, for which a W-, M-, or S-shape from Part 1 of the Manual will become slender. To which shapes does this value apply? What conclusion can you draw from your answer?arrow_forwardA plate girder must be designed for the conditions shown in Figure P10.7-4. The given loads are factored, and the uniformly distributed load includes a conservative estimate of the girder weight. Lateral support is provided at the ands and at the load points. Use LRFD for that following: a. Select the, flange and web dimensions so that intermediate stiffeners will he required. Use Fy=50 ksi and a total depth of 50 inches. Bearing stiffeners will be used at the ends and at the load points, but do not proportion them. b. Determine the locations of the intermediate stiffeners, but do not proportion them.arrow_forward
- The given beam is laterally supported at the ends and at the 1 3 points (points 1, 2, 3, and 4). The concentrated load is a service live load. Use Fy=50 ksi and select a W-shape. Do not check deflections. a. Use LRFD. b. Use ASD.arrow_forwardUse A992 steel and select a W14 shape for an axially loaded column to meet the following specifications: The length is 22 feet, both ends are pinned, and there is bracing in the weak direction at a point 10 feet from the top. The service dead load is 142 kips, and the service live load is 356 hips. a. Use LRFD. b. Use ASD.arrow_forwardNote For Problems 9.6-1 through 9.6-5, use the lower-bound moment of inertia for deflection of the composite section. Compute this as illustrated in Example 9.7. 9.6-3 For the beam of Problem 9.3-1, a. Compute the deflections that occur before and after the concrete has cured. b. If the live-load deflection exceeds L360 , select another steel shape using either LRFD or ASD.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning

Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning