
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:Using the Maxwell relations, determine a relation for
equation of state is (P-a/v²) (v−b) = RT.
Os
for a gas whose
av T
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Similar questions
- Using the two relationships below, a ( ôH ƏH =V -T ÔT T show that the Virial equation of state V nR ·+B(T) conforms to, m aC P.m d²B(T) =-T. dT? ƏP (a (OP)) ( a ( əP))arrow_forward1. The virial equation of state can be written as: Z = 1+ BP/(RT) Let B be given as : B = a – b/T? Derive the equation for the internal energy departure: U(T, P) – U(T, P=0). where a andb are constants.arrow_forwardV. W. Th To %3D Room temperature T = 293 K V V. Vp The gas volume changes from Vp to Va at constant temperature T. The cartoon on the right shows a piston of gas undergoing this compression while submerged in a container of room temperature water, which acts as a reservoir. The initial state of this process is a piston containing 2 moles of a monatomic gas at Tc = 293 K (room temperature water) and volume V = a 1.0 m. The gas is compressed until V, = 0.2 m. During the compression, the heat bath of room temperature water maintains the temperature of the gas at T 293 K. Calculate the work done in joules by the gas during this process. Do not include units in your answer. Be careful to use the standard sign convention for work done by the gas. Write your numerical answer in normal form as described above in the instructions to this worksheet.arrow_forward
- WA 4. a Th To Room temperature T = 293 K %3D V The gas volume changes from Vp to Va at constant temperature T. The cartoon on the right shows a piston of gas undergoing this compression while submerged in a container of room temperature water, which acts as a reservoir. The initial state of this process is a piston containing 2 moles of a monatomic gas at T, = 293 K (room temperature water) and volume V = 1.0 m. The gas is compressed until V, = 0.2 m. During the compression, the heat bath of room temperature water maintains the temperature of the gas at T = 293 K. Calculate the change in internal energy of the gas in joules during this process. Do not include units in your answer. Be careful to use the standard sign conventions for heat and work. Write your numerical answer in normal form as described above in the instructions to this worksheet. Click Save and Submit to save and submit. Click Save All Answers to save all answers. 28 F aarrow_forwardA PV diagram below, Figure 1, shows two possible states of a system containing three moles of a monatomic ideal gas. (P,= P2 = 450 Pa, V, = 2m', V,= 8m²) c. Draw the process which depicts an isothermal expansion from state 1 to the volume V, followed by an isochoric increase in temperature to state 2 and label this process (B). d. Find the change in internal energy of the gas for the two-step process (B) Figure 1 (N/m²) 500 ! 400+ 300+ 200+ 100 - + + + + 4 6. 8 10 V (m³) 2 Copyright © 2005 Pearson Prentice Hall, Inc.arrow_forwardDerive an expression for the specific heat difference of a substance whose equation of state is: P=[(RT)/(v-b)]-[a/(v*(v+b)*T1/2)] Where a and b are empirical constantsarrow_forward
- c. What is the internal energy, u, in kJ/kg of refrigerant R22 at temperature T=-10°C. and specific volume v=0.055 m³/kg? Draw a p-v and T-o diagram and locate the state. What is the phase of the state?arrow_forward1) Given a vessel with V = 0.4 m3 filled with m = 2 of H2O at P = 600 kPa, find • the volume and mass of liquid, and • the volume and mass of vapor.arrow_forwardAnswer for J and Karrow_forward
- For a gas whose equation of state is P(v-b)=RT, the specified heat difference Cp-Cv is equal to which of the following (show all work): (a) R (b) R-b (c) R+b (d) 0 (e) R(1+v/b)arrow_forwardOne mole of a monatomic ideal gas undergoes a cycle that has four steps. At point 1 it starts at a pressure of 3 × 105 Pa and a volume of 20 × 10-3 m3 It undergoes an isothermal expansion to point 2 to a new volume at of 8.0 × 10-3 m?. It then undergoes an isochoric process to point 3 until its pressure is half as much of what it was at point 2. It then goes through an isothermal compression to point 4 to a volume of 20 mL. It returns to point 1 via an isochoric step. What is the temperature of the gas at point 1? How much work is done by the gas in step 1 to 2? What is the pressure of the gas at point 2? What is the total work done by the gas in the entire cycle? A monatomic ideal gas (y = 5/3) is contained within a perfectly insulated cylinder that is fitted with a movable piston. The initial pressure of the gas is 1.5 x 105 Pa. The piston is pushed so as to compress the gas, with the result that the Kelvin temperature doubles. What is the final pressure of the gas? a. 4.91 ×…arrow_forward3. Verify the validity of the last Maxwell relation (Eq. (2) for refrigerant-134a at 80 C and 1.2 MPa: this point is at a superheated state. Use the range of 60°C s T s 100°C and 1.0MPA s Ps 1.4MPA. Eq. (2) ƏTarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY