Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 28, Problem 72PQ
To determine

The criterion for choosing the dimension of the lead wire so that it provides the same resistance of the gold wire.

Expert Solution & Answer
Check Mark

Answer to Problem 72PQ

In order to result the same resistance as that of the gold wire, the lead wire should have dimensions such that the cross sectional area and the lengths of the wires are related as lPbAPb=(0.108)lAuAAu_. The lead wire can be made as either with APb=AAu_ and lPb=(0.108)lAu_, or with lPb=lAu_ and APb=AAu(0.108)_.

Explanation of Solution

The resistivity of gold is 2.24×108Ωm, and that of lead is 2.065×107Ωm.

Write the expression for the resistance.

  R=ρlA                                                                                                                (I)

Here, R is the resistance, ρ is the resistivity, l is the length, and A is the cross sectional area of the wire.

Analogous to equation (I), write the expression for the resistance of gold (Au) and lead (Pb) wires.

  RAu=ρAulAuAAu                                                                                                      (II)

  RPb=ρPblPbAPb                                                                                                       (III)

Since both wires has to have same resistance, equate the right-hand sides of equations (II) and (III) and reduce.

  ρAulAuAAu=ρPblPbAPblPbAPb=(ρAuρPb)lAuAAu                                                                                         (IV)

Conclusion:

Substitute 2.24×108Ωm for ρAu, and 2.065×107Ωm for ρPb in equation (IV) to find the condition on the dimensions of the wires.

  lPbAPb=(2.24×108Ωm2.065×107Ωm)lAuAAu=(0.108)lAuAAu

This expression is the most general statement about the dimensions with which the lead wire has to be made such that it offers same resistance as that of the gold wire. The ratio of the length to cross sectional area of the lead wire must be 0.108 times that of the gold wire. Thus, the new wire can be made either by keeping cross sectional area to be same and lengths vary or vice versa.

Therefore, in order to result the same resistance as that of the gold wire, the lead wire should have dimensions such that the cross sectional area and the lengths of the wires are related as lPbAPb=(0.108)lAuAAu_. The lead wire can be made as either with APb=AAu_ and lPb=(0.108)lAu_, or with lPb=lAu_ and APb=AAu(0.108)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An electron is fired at a speed vi = 3.1 × 106 m/s and at an angle θi = 36.8° between two parallel conducting plates as shown in the figure. If s = 1.8 mm and the voltage difference between the plates is ΔV = 98.8 V, determine how close, w, the electron will get to the bottom plate. Put your answer in meters and include at 6 decimal places in your answer. Do not include units. The x-axis of the coordinate system is in the middle of the parallel plate capacitor
An electron is fired at a speed vi = 4.3 × 106 m/s and at an angle θi = 39.7° between two parallel conducting plates as shown in the figure. If s = 1.7 mm and the voltage difference between the plates is ΔV = 99.8 V, determine how close, w, the electron will get to the bottom plate. Put your answer in meters and include at 6 decimal places in your answer. Do not include units. The x-axis of the coordinate system is in the middle of the parallel plate capacitor.   Round your answer to 6 decimal places.
Equation1: Q(t)=CVcap(t) Equation 2: Qcharging(t)=CV(1−e^(−t/RC)) 1. Combine equations 1 and 2 to create an equation capable of finding the time-dependent voltage across a charging capacitor. Equation 3: I(t)≡(dQ(t))/(dt) 2. Combine equations 2 and 3 to create an equation capable of finding the time-dependent current across a charging capacitor.

Chapter 28 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 28 - Prob. 5PQCh. 28 - Prob. 6PQCh. 28 - Prob. 7PQCh. 28 - Prob. 8PQCh. 28 - Prob. 9PQCh. 28 - Prob. 10PQCh. 28 - Prob. 11PQCh. 28 - Prob. 12PQCh. 28 - Prob. 13PQCh. 28 - Prob. 14PQCh. 28 - The current in a wire varies with time (measured...Ch. 28 - Prob. 16PQCh. 28 - The amount of charge that flows through a copper...Ch. 28 - Prob. 18PQCh. 28 - Prob. 19PQCh. 28 - Prob. 20PQCh. 28 - Prob. 21PQCh. 28 - Prob. 22PQCh. 28 - A copper wire that is 2.00 mm in radius with...Ch. 28 - Prob. 24PQCh. 28 - Prob. 25PQCh. 28 - Prob. 26PQCh. 28 - What is the electric field in an aluminum wire if...Ch. 28 - Prob. 28PQCh. 28 - Prob. 29PQCh. 28 - Prob. 30PQCh. 28 - Prob. 31PQCh. 28 - Prob. 32PQCh. 28 - Two concentric, metal spherical shells of radii a...Ch. 28 - Prob. 34PQCh. 28 - Prob. 35PQCh. 28 - Prob. 36PQCh. 28 - Prob. 37PQCh. 28 - A lightbulb is connected to a variable power...Ch. 28 - Prob. 39PQCh. 28 - Prob. 40PQCh. 28 - Prob. 41PQCh. 28 - Prob. 42PQCh. 28 - Prob. 43PQCh. 28 - A Two wires with different resistivities, 1 and 2,...Ch. 28 - A copper and a gold wire are supposed to have the...Ch. 28 - Gold bricks are formed with the dimensions 7358134...Ch. 28 - Prob. 47PQCh. 28 - Prob. 48PQCh. 28 - Prob. 49PQCh. 28 - Prob. 50PQCh. 28 - Prob. 51PQCh. 28 - Prob. 52PQCh. 28 - Prob. 53PQCh. 28 - Prob. 54PQCh. 28 - A two-slice bread toaster consumes 850.0 W of...Ch. 28 - Prob. 56PQCh. 28 - Prob. 57PQCh. 28 - Prob. 58PQCh. 28 - Prob. 59PQCh. 28 - Prob. 60PQCh. 28 - Prob. 61PQCh. 28 - Prob. 62PQCh. 28 - Prob. 63PQCh. 28 - Prob. 64PQCh. 28 - Prob. 65PQCh. 28 - Prob. 66PQCh. 28 - Prob. 67PQCh. 28 - Prob. 68PQCh. 28 - Prob. 69PQCh. 28 - Prob. 70PQCh. 28 - Prob. 71PQCh. 28 - Prob. 72PQCh. 28 - Prob. 73PQCh. 28 - Prob. 74PQCh. 28 - Review When a metal rod is heated, its resistance...Ch. 28 - Prob. 76PQCh. 28 - Prob. 77PQCh. 28 - Prob. 78PQCh. 28 - Prob. 79PQCh. 28 - Prob. 80PQCh. 28 - Prob. 81PQCh. 28 - A conducting material with resistivity is shaped...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY