Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 37, Problem 37.50AP

Raise your hand and hold it flat. Think of the space between your index finger and your middle finger as one slit and think of the space between middle finger and ring finger as a second slit. (a) Consider the interference resulting from sending coherent visible light perpendicularly through this pair of openings. Compute an order-of-magnitude estimate for the angle between adjacent zones of constructive interference. (b) To make the angles in the interference pattern easy to measure with a plastic protractor, you should use an electromagnetic wave with frequency of what order of magnitude? (c) How is this wave classified on the electromagnetic spectrum?

Blurred answer
Students have asked these similar questions
Raise your hand and hold it flat. Think of the space between your index finger and your middle finger as one slit and think of the space between middle finger and ring finger as a second slit. (a) Consider the interference resulting from sending coherent visible light perpendicularly through thispair of openings. Compute an order-of-magnitude estimate for the angle between adjacent zones of constructive interference. (b) To make the angles in the interference pattern easy to measure with a plastic protractor, you should use an electromagnetic wave with frequency of what order of magnitude? (c) How is this wave classified on the electromagnetic spectrum?
(a) What are coherent sources of light? Two slits in Young’s double slit experiment are illuminated by two different sodium lamps emitting light of the same wavelength. Why is no interference pattern observed? (b) Obtain the condition for getting dark and bright fringes in Young’s experiment. Hence write the expression for the fringe width. (c) If s is the size of the source and its distance is a from the plane of the two slits, what should be the criterion for the interference fringes to be seen?
A red laser beam with wavelength λ = 6.33 × 10-7 m is shone through a pair of narrow slits with a separation of 1.00 × 10-5 m at normal incidence. This produces an interference pattern on the other side of the slits. Show that a total of 31 constructive interference maxima (including the zeroth-order maximum) can be observed in the interference pattern. (Remember that no constructive interference maximum will have an angle greater than 90.0°.)

Chapter 37 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 37 - Suppose you perform Youngs double-slit experiment...Ch. 37 - A plane monochromatic light wave is incident on a...Ch. 37 - A film of' oil on a puddle in a parking lot shows...Ch. 37 - Prob. 37.1CQCh. 37 - Prob. 37.2CQCh. 37 - Explain why two flashlights held close together do...Ch. 37 - A lens with outer radius of curvature R and index...Ch. 37 - Consider a dark fringe in a double-slit...Ch. 37 - Prob. 37.6CQCh. 37 - What is the necessary condition on the path length...Ch. 37 - In a laboratory accident, you spill two liquids...Ch. 37 - A theatrical smoke machine fills the space bet...Ch. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Light of wavelength 530 nm illuminates a pair of...Ch. 37 - A laser beam is incident on two slits with a...Ch. 37 - A Youngs interference experiment is performed with...Ch. 37 - Youngs double-slit experiment is performed with...Ch. 37 - Why is the following situation impossible? Two...Ch. 37 - Light of wavelength 620 nm falls on a double slit,...Ch. 37 - In a Youngs double-slit experiment, two parallel...Ch. 37 - pair of narrow, parallel slits separated by 0.250...Ch. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - The two speakers of a boom box are 35.0 cm apart....Ch. 37 - Prob. 37.12PCh. 37 - Two radio antennas separated by d = 300 in as...Ch. 37 - A riverside warehouse has several small doors...Ch. 37 - A student holds a laser that emits light of...Ch. 37 - A student holds a laser that emits light of...Ch. 37 - Radio waves of wavelength 125 m from a galaxy...Ch. 37 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 37 - Coherent light rays of wavelength strike a pair...Ch. 37 - Monochromatic light of wavelength is incident on...Ch. 37 - In the double-slit arrangement of Figure P36.13, d...Ch. 37 - Youngs double-slit experiment underlies the...Ch. 37 - Two slits are separated by 0.180 mm. An...Ch. 37 - Prob. 37.24PCh. 37 - In Figure P37.18, let L = 120 cm and d = 0.250 cm....Ch. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - The intensity on the screen at a certain point in...Ch. 37 - Green light ( = 546 nm) illuminates a pair of...Ch. 37 - Two narrow, parallel slits separated by 0.850 mm...Ch. 37 - A soap bubble (n = 1.33) floating in air has the...Ch. 37 - A thin film of oil (n = 1.25) is located on...Ch. 37 - A material having an index of refraction of 1.30...Ch. 37 - Prob. 37.33PCh. 37 - A film of MgF2 (n = 1.38) having thickness 1.00 ...Ch. 37 - A beam of 580-nm light passes through two closely...Ch. 37 - An oil film (n = 1.45) floating on water is...Ch. 37 - An air wedge is formed between two glass plates...Ch. 37 - Astronomers observe the chromosphere of the Sun...Ch. 37 - When a liquid is introduced into the air space...Ch. 37 - A lens made of glass (ng = 1.52) is coated with a...Ch. 37 - Two glass plates 10.0 cm long are in contact at...Ch. 37 - Mirror M1 in Figure 36.13 is moved through a...Ch. 37 - Prob. 37.43PCh. 37 - One leg of a Michelson interferometer contains an...Ch. 37 - Radio transmitter A operating at 60.0 MHz is 10.0...Ch. 37 - A room is 6.0 m long and 3.0 m wide. At the front...Ch. 37 - In an experiment similar to that of Example 36.1,...Ch. 37 - In the What If? section of Example 36.2, it was...Ch. 37 - An investigator finds a fiber at a crime scene...Ch. 37 - Raise your hand and hold it flat. Think of the...Ch. 37 - Two coherent waves, coming from sources at...Ch. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Review. A flat piece of glass is held stationary...Ch. 37 - A certain grade of crude oil has an index of...Ch. 37 - The waves from a radio station can reach a home...Ch. 37 - Interference effects are produced at point P on a...Ch. 37 - Measurements are made of the intensity...Ch. 37 - Many cells are transparent anti colorless....Ch. 37 - Consider the double-slit arrangement shown in...Ch. 37 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 37 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 37 - In a Newtons-rings experiment, a plano-convex...Ch. 37 - Why is the following situation impossible? A piece...Ch. 37 - A plano-concave lens having index of refraction...Ch. 37 - A plano-convex lens has index of refraction n. The...Ch. 37 - Interference fringes are produced using Lloyds...Ch. 37 - Prob. 37.68APCh. 37 - Astronomers observe a 60.0-MHz radio source both...Ch. 37 - Figure CQ37.2 shows an unbroken soap film in a...Ch. 37 - Our discussion of the techniques for determining...Ch. 37 - The condition for constructive interference by...Ch. 37 - Both sides of a uniform film that has index of...Ch. 37 - Prob. 37.74CPCh. 37 - Monochromatic light of wavelength 620 nm passes...Ch. 37 - Prob. 37.76CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY